The most heavily glacierized tropical range in the world– the Peruvian Cordillera Blanca-has been losing ice since the end of the Little Ice Age(LIA).In this study,the decline of the Churup glacier(9°28’18"...The most heavily glacierized tropical range in the world– the Peruvian Cordillera Blanca-has been losing ice since the end of the Little Ice Age(LIA).In this study,the decline of the Churup glacier(9°28’18"S;77°25’02"W)and associated processes were documented employing multi-proxy approach including the analysis of remotely sensed images(1948-2016),the Schmidt hammer rock test and lichenometric dating.It is shown that Churup glacier has lost the vast majority of its estimated LIA extent(1.05±0.1 km^2;45.0×10^6-57.4×10^6 m^3).The rate of glacier retreat is documented to vary in space(SE,SW and NW-facing slopes)and time,with the peak between 1986 and 1995.With an area of 0.045 km^2 in 2016,it is expected that the complete deglaciation of the Churup valley is inevitable in the near future.Recently(post-LIA)exposed bedrock surfaces have shown higher R-values(54.2-66.4,AVG 63.3,STDEV 2.9)compared to pre-LIA exposed surfaces(46.1-59.3,AVG 50.1,STDEV 4.9),confirming the links to the duration of rock weathering.The Lichenometric dating is applied to recently exposed areas and elevations above 4800 m a.s.l.,revealing only limited reliability and agreement with the age of deglaciation estimated from remotely-sensed images in such an environment.展开更多
Glacial lake outburst floods(GLOFs)represent one of the most serious hazard and risk in deglaciating high mountain regions worldwide and the need for GLOF hazard and risk assessment is apparent.As a consequence,numero...Glacial lake outburst floods(GLOFs)represent one of the most serious hazard and risk in deglaciating high mountain regions worldwide and the need for GLOF hazard and risk assessment is apparent.As a consequence,numerous region-and nation-wide GLOF assessment studies have been published recently.These studies cover large areas and consider hundreds to thousands of lakes,prioritizing the hazard posed by them.Clearly,certain simplification is required for executing such studies,often resulting in neglecting qualitative characteristics which would need manual assignment.Different lake dam types(e.g.,bedrock-dammed,moraine-dammed)are often not distinguished,despite they control GLOF mechanism(dam overtopping/dam breach)and thus GLOF magnitude.In this study,we explore the potential of easily measurable quantitative characteristics and four ratios to approximate the lake dam type.Our dataset of 851 lakes of the Cordillera Blanca suggests that while variances and means of these characteristics of individual lake types differ significantly(F-test,t-test),value distribution of different geometrical properties can’t be used for the originally proposed purpose along the spectra.The only promising results are obtained for extreme values(selected bins)of the ratios.For instance,the low width to length ratio indicates likely morainedammed lake while the high value of ratio indicating round-shape of the lake indicates increased likelihood of bedrock-dammed lake.Overall,we report a negative result of our experiment since there are negligible differences of relative frequencies in most of the bins along the spectra.展开更多
基金the Ministry of Education, Youth and Sports of the Czech Republic within the framework of the National Sustainability Programme Ⅰ(NPU Ⅰ), Grant No. LO1415
文摘The most heavily glacierized tropical range in the world– the Peruvian Cordillera Blanca-has been losing ice since the end of the Little Ice Age(LIA).In this study,the decline of the Churup glacier(9°28’18"S;77°25’02"W)and associated processes were documented employing multi-proxy approach including the analysis of remotely sensed images(1948-2016),the Schmidt hammer rock test and lichenometric dating.It is shown that Churup glacier has lost the vast majority of its estimated LIA extent(1.05±0.1 km^2;45.0×10^6-57.4×10^6 m^3).The rate of glacier retreat is documented to vary in space(SE,SW and NW-facing slopes)and time,with the peak between 1986 and 1995.With an area of 0.045 km^2 in 2016,it is expected that the complete deglaciation of the Churup valley is inevitable in the near future.Recently(post-LIA)exposed bedrock surfaces have shown higher R-values(54.2-66.4,AVG 63.3,STDEV 2.9)compared to pre-LIA exposed surfaces(46.1-59.3,AVG 50.1,STDEV 4.9),confirming the links to the duration of rock weathering.The Lichenometric dating is applied to recently exposed areas and elevations above 4800 m a.s.l.,revealing only limited reliability and agreement with the age of deglaciation estimated from remotely-sensed images in such an environment.
基金the financial support by the University of Grazpartly supported by the Ministry of Education,Youth and Sports of the Czech Republic within the National Sustainability Programme I(NPU I),grant number LO1415Supporting perspective human resources Programme of the Czech Academy of Sciences,project"Dynamics and spatiotemporal patterns of glacial lakes evolution and their implications for risk management and adaptation in recently deglaciated areas"awarded to AE。
文摘Glacial lake outburst floods(GLOFs)represent one of the most serious hazard and risk in deglaciating high mountain regions worldwide and the need for GLOF hazard and risk assessment is apparent.As a consequence,numerous region-and nation-wide GLOF assessment studies have been published recently.These studies cover large areas and consider hundreds to thousands of lakes,prioritizing the hazard posed by them.Clearly,certain simplification is required for executing such studies,often resulting in neglecting qualitative characteristics which would need manual assignment.Different lake dam types(e.g.,bedrock-dammed,moraine-dammed)are often not distinguished,despite they control GLOF mechanism(dam overtopping/dam breach)and thus GLOF magnitude.In this study,we explore the potential of easily measurable quantitative characteristics and four ratios to approximate the lake dam type.Our dataset of 851 lakes of the Cordillera Blanca suggests that while variances and means of these characteristics of individual lake types differ significantly(F-test,t-test),value distribution of different geometrical properties can’t be used for the originally proposed purpose along the spectra.The only promising results are obtained for extreme values(selected bins)of the ratios.For instance,the low width to length ratio indicates likely morainedammed lake while the high value of ratio indicating round-shape of the lake indicates increased likelihood of bedrock-dammed lake.Overall,we report a negative result of our experiment since there are negligible differences of relative frequencies in most of the bins along the spectra.