期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Glacier retreat, rock weathering and the growth of lichensin the Churup Valley, Peruvian Tropical Andes
1
作者 adam emmer Anna JURICOVA Bijeesh Kozhikkodan VEETTIL 《Journal of Mountain Science》 SCIE CSCD 2019年第7期1485-1499,共15页
The most heavily glacierized tropical range in the world– the Peruvian Cordillera Blanca-has been losing ice since the end of the Little Ice Age(LIA).In this study,the decline of the Churup glacier(9°28’18"... The most heavily glacierized tropical range in the world– the Peruvian Cordillera Blanca-has been losing ice since the end of the Little Ice Age(LIA).In this study,the decline of the Churup glacier(9°28’18"S;77°25’02"W)and associated processes were documented employing multi-proxy approach including the analysis of remotely sensed images(1948-2016),the Schmidt hammer rock test and lichenometric dating.It is shown that Churup glacier has lost the vast majority of its estimated LIA extent(1.05±0.1 km^2;45.0×10^6-57.4×10^6 m^3).The rate of glacier retreat is documented to vary in space(SE,SW and NW-facing slopes)and time,with the peak between 1986 and 1995.With an area of 0.045 km^2 in 2016,it is expected that the complete deglaciation of the Churup valley is inevitable in the near future.Recently(post-LIA)exposed bedrock surfaces have shown higher R-values(54.2-66.4,AVG 63.3,STDEV 2.9)compared to pre-LIA exposed surfaces(46.1-59.3,AVG 50.1,STDEV 4.9),confirming the links to the duration of rock weathering.The Lichenometric dating is applied to recently exposed areas and elevations above 4800 m a.s.l.,revealing only limited reliability and agreement with the age of deglaciation estimated from remotely-sensed images in such an environment. 展开更多
关键词 CORDILLERA Blanca Tropical glaciers DEGLACIATION Geoenvironmental change Lichenometry Rhizocarpon geographicum SCHMIDT HAMMER ANDES
原文传递
Can a dam type of an alpine lake be derived from lake geometry?A negative result
2
作者 adam emmer Vojtěch CURIN 《Journal of Mountain Science》 SCIE CSCD 2021年第3期614-621,共8页
Glacial lake outburst floods(GLOFs)represent one of the most serious hazard and risk in deglaciating high mountain regions worldwide and the need for GLOF hazard and risk assessment is apparent.As a consequence,numero... Glacial lake outburst floods(GLOFs)represent one of the most serious hazard and risk in deglaciating high mountain regions worldwide and the need for GLOF hazard and risk assessment is apparent.As a consequence,numerous region-and nation-wide GLOF assessment studies have been published recently.These studies cover large areas and consider hundreds to thousands of lakes,prioritizing the hazard posed by them.Clearly,certain simplification is required for executing such studies,often resulting in neglecting qualitative characteristics which would need manual assignment.Different lake dam types(e.g.,bedrock-dammed,moraine-dammed)are often not distinguished,despite they control GLOF mechanism(dam overtopping/dam breach)and thus GLOF magnitude.In this study,we explore the potential of easily measurable quantitative characteristics and four ratios to approximate the lake dam type.Our dataset of 851 lakes of the Cordillera Blanca suggests that while variances and means of these characteristics of individual lake types differ significantly(F-test,t-test),value distribution of different geometrical properties can’t be used for the originally proposed purpose along the spectra.The only promising results are obtained for extreme values(selected bins)of the ratios.For instance,the low width to length ratio indicates likely morainedammed lake while the high value of ratio indicating round-shape of the lake indicates increased likelihood of bedrock-dammed lake.Overall,we report a negative result of our experiment since there are negligible differences of relative frequencies in most of the bins along the spectra. 展开更多
关键词 Alpine lake High mountain lake GLOFs Glacial lake Moraine-dammed Bedrock-dammed Negative result Cordillera Blanca
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部