The voltage controlled oscillator-based (VCO-based) continuous-time delta-sigma (CTDS) analog to digital converter (ADC) suffers from nonlinearity and mismatch in its feedback network. A new feedback network con...The voltage controlled oscillator-based (VCO-based) continuous-time delta-sigma (CTDS) analog to digital converter (ADC) suffers from nonlinearity and mismatch in its feedback network. A new feedback network consisting of a phase shifter is proposed. The phase shifter replaces the digital to analog converter (DAC) in the proposed architecture. Feasibility of the proposed idea is discussed and its higher performance is illustrated through a behavioral simulation approach (CppSim). We have also developed the phase shifter as a variable all-pass filter in the C language. The nonlinearity and mismatch of the system caused by DAC is mitigated, resulting in higher signal to noise ratio (SNR) and signal to noise and distortion ratio (SNDR), respectively.展开更多
基金supported by Iran Telecommunication Research Center under Grant No. 4222/500
文摘The voltage controlled oscillator-based (VCO-based) continuous-time delta-sigma (CTDS) analog to digital converter (ADC) suffers from nonlinearity and mismatch in its feedback network. A new feedback network consisting of a phase shifter is proposed. The phase shifter replaces the digital to analog converter (DAC) in the proposed architecture. Feasibility of the proposed idea is discussed and its higher performance is illustrated through a behavioral simulation approach (CppSim). We have also developed the phase shifter as a variable all-pass filter in the C language. The nonlinearity and mismatch of the system caused by DAC is mitigated, resulting in higher signal to noise ratio (SNR) and signal to noise and distortion ratio (SNDR), respectively.