The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction...The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.展开更多
With the rapid development of the Internet of Things(IoT),all kinds of data are increasing exponentially.Data storage and computing on cloud servers are increasingly restricted by hardware.This has prompted the develo...With the rapid development of the Internet of Things(IoT),all kinds of data are increasing exponentially.Data storage and computing on cloud servers are increasingly restricted by hardware.This has prompted the development of fog computing.Fog computing is to place the calculation and storage of data at the edge of the network,so that the entire Internet of Things system can run more efficiently.The main function of fog computing is to reduce the burden of cloud servers.By placing fog nodes in the IoT network,the data in the IoT devices can be transferred to the fog nodes for storage and calculation.Many of the information collected by IoT devices are malicious traffic,which contains a large number of malicious attacks.Because IoT devices do not have strong computing power and the ability to detect malicious traffic,we need to deploy a system to detect malicious attacks on the fog node.In response to this situation,we propose an intrusion detection system based on distributed ensemble design.The system mainly uses Convolutional Neural Network(CNN)as the first-level learner.In the second level,the random forest will finally classify the prediction results obtained in the first level.This paper uses the UNSW-NB15 dataset to evaluate the performance of the model.Experimental results show that the model has good detection performance for most attacks.展开更多
Undoubtedly, it is imperative to figure out two stubborn issues concerning low electronic conductivity and sluggish lithium ion diffusion to promote the practical application of Li2FeSiO4 materials in lithium-ion batt...Undoubtedly, it is imperative to figure out two stubborn issues concerning low electronic conductivity and sluggish lithium ion diffusion to promote the practical application of Li2FeSiO4 materials in lithium-ion battery (LIB) cathode. Herein, we report an innovative and simple strategy that combines a hydrothermal process with subsequent annealing to synthesize highly uniform Li2FeSiO/C hollow nanospheres. During the hydrothermal process, polystyrenen anospheres are employed not only as the template but also, more tactfully, as carb on source to form amorphous carbon layers, which will function to enhance the electronic conductivity and restrict particle aggregations. The use of the LIB Li2FeSiO4/C hollow nano spheres as a LIB cathode delivers a desired stable capacity at each rate stage, and eve n at a high rate of 10 C, the hollow nano sphere cathode can prese nt a specific discharge capacity as high as 50.5 mAh·g^-1. After 100 cycles, the capacity rete ntions at 1 and 10 C remain as high as 93% and 72%, respectively. The superior electrochemical performance is believed to be related to special architectures of the Li2FeSiO4/C hollow nano sphere cathode.展开更多
Concentrating active Pt atoms in the outer layers of electrocatalysts is a very effective approach to greatly reduce the Pt loading without compromising the electrocatalytic performance and the total electrochemically...Concentrating active Pt atoms in the outer layers of electrocatalysts is a very effective approach to greatly reduce the Pt loading without compromising the electrocatalytic performance and the total electrochemically active surface area(ECSA)for the oxygen reduction reaction(ORR)in hydrogen-based proton-exchange membrane fuel cells.Accordingly,a facile,low-cost,and hydrogen-assisted two-step method is developed in this work,to massively prepare carbon-supported uniform,small-sized,and surfactant-free Pd nanoparticles(NPs)with ultrathin~3-atomic-layer Pt shells(Pd@Pt_(3L) NPs/C).Comprehensive physicochemical characterizations,electrochemical analyses,fuel cell tests,and density functional theory calculations reveal that,benefiting from the ultrathin Pt-shell nanostructure as well as the resulting ligand and geometric effects,Pd@Pt_(3L) NPs/C exhibits not only significantly enhanced ECSA,electrocatalytic activity,and noble-metal(NM)utilization compared to commercial Pt/C,showing 81.24 m^(2)/gPt,0.710 mA/cm^(2),and 352/577 mA/mgNM/Pt in ECSA,area-,and NM-/Pt-mass-specific activity,respectively;but also a much better electrochemical stability during the 10,000-cycle accelerated degradation test.More importantly,the corresponding 25-cm^(2) H2-air/O_(2) fuel cell with the low cathodic Pt loading of~0.152 mgPt/cm^(2)geo achieves the high power density of 0.962/1.261 W/cm^(2)geo at the current density of only 1,600 mA/cm^(2)geo,which is much higher than that for the commercial Pt/C.This work not only develops a high-performance and practical Pt-based ORR electrocatalyst,but also provides a scalable preparation method for fabricating the ultrathin Pt-shell nanostructure,which can be further expanded to other metal shells for other energy-conversion applications.展开更多
Un doubtedly,there remai ns an urge nt prerequisite to achieve sign ifica nt adva nces in both the specific capacity and cyclability of Li-O2 batteries for their practical application.In this work,a series of unique t...Un doubtedly,there remai ns an urge nt prerequisite to achieve sign ifica nt adva nces in both the specific capacity and cyclability of Li-O2 batteries for their practical application.In this work,a series of unique three-dimensional(3D)α-MnO2/MWCNTs hybrids are successfully prepared using a facile lyophilization method and investigated as the cathode of Li-O2 batteries.Thereinto,cross-1 inkedα-MnO2/MWCNTs nano composites are first syn thesized via a modified chemical route.Results dem on strate that MnO2 nano rods in the nano composites have a length of 100-400 nm and a diameter ranging from 5 to 10 nm,and more attractively,the as-lyophilized 3D MnO2/MWCNTs hybrids is uniquely constructed with large amounts of interconnected macroporous channels.The U-O2 battery with the 3D macroporous hybrid cathode that has a mass percentage of 50%ofα-MnO2 delivers a high discharge specific capacity of 8,643 mAh·g^-1 at 100 mA·g^-1,and main tains over 90 cycles before the discharge voltage drops to 2.0 V un der a controlled specific capacity of 1,000 mAh·g^-1.It is observed that when being recharged,the product of toroidal Li2O2 particles disappears and electrode surfaces are well recovered,thus confirming a good reversibility.The excellent performanee of Li-O2 battery with the 3Dα-MnO2/MWCNTs macroporous hybrid cathode is ascribed to a syn ergistic com bination betwee n the unique macroporous architecture and highly efficient bi-fun ctionalα-MnO2/MWCNTs electrocatalyst.展开更多
An environment-friendly,water-soluble,and cellulose based binder(lithium carboxymethyl cellulose,CMC-Li)was successfully synthesized by using Li+to replace Na+in the commercial sodium carboxymethyl cellulose(CMC-Na).L...An environment-friendly,water-soluble,and cellulose based binder(lithium carboxymethyl cellulose,CMC-Li)was successfully synthesized by using Li+to replace Na+in the commercial sodium carboxymethyl cellulose(CMC-Na).Li-O2 batteries based on the CMC-Li binder present enhanced discharge specific capacities(11151 mAh/g at 100 mA/g)and a superior cycling stability(100 cycles at 200 mA/g)compared with those based on the CMC-Na binder.The enhanced performance may originate from the electrochemical stability of the CMC-Li binder and the ion-conductive nature of CMC-Li,which promotes the diffusion of Li+in the cathode and consequently retards the increase of charge transfer resistance of the cathode during cycling.The results show that the water-soluble CMC-Li binder can be a green substitute for poly(vinylidene fluoride)(PVDF)binder based on organic solvent in the lithium oxygen batteries(LOBs).展开更多
基金supported by the National Key Research and Development Program of China(2021YFB4001301)the Science and Technology Commission of Shanghai Municipality(21DZ1208600)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2021ZD105)。
文摘The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.
基金supported in part by the Beijing Natural Science Foundation (No.4212015)Natural Science Foundation of China (No.61801008)+2 种基金China Ministry of Education China Mobile Scientific Research Foundation (No.MCM20200102)China Postdoctoral Science Foundation (No.2020M670074)Beijing Municipal Commission of Education Foundation (No.KM201910005025).
文摘With the rapid development of the Internet of Things(IoT),all kinds of data are increasing exponentially.Data storage and computing on cloud servers are increasingly restricted by hardware.This has prompted the development of fog computing.Fog computing is to place the calculation and storage of data at the edge of the network,so that the entire Internet of Things system can run more efficiently.The main function of fog computing is to reduce the burden of cloud servers.By placing fog nodes in the IoT network,the data in the IoT devices can be transferred to the fog nodes for storage and calculation.Many of the information collected by IoT devices are malicious traffic,which contains a large number of malicious attacks.Because IoT devices do not have strong computing power and the ability to detect malicious traffic,we need to deploy a system to detect malicious attacks on the fog node.In response to this situation,we propose an intrusion detection system based on distributed ensemble design.The system mainly uses Convolutional Neural Network(CNN)as the first-level learner.In the second level,the random forest will finally classify the prediction results obtained in the first level.This paper uses the UNSW-NB15 dataset to evaluate the performance of the model.Experimental results show that the model has good detection performance for most attacks.
基金the National Natural Science Foundation of China (Nos. 21503134 and 21406220)the Science Foundation of Ministry of Education of China (No. 413064)+2 种基金PSA Peugeot Citroen (No. 13H100000584)Shanghai Jiao Tong University New Faculty Startup Funds (No. 14X10040061)the Science and Technology Commission of Shanghai Municipality (NO.15YF1406500).
文摘Undoubtedly, it is imperative to figure out two stubborn issues concerning low electronic conductivity and sluggish lithium ion diffusion to promote the practical application of Li2FeSiO4 materials in lithium-ion battery (LIB) cathode. Herein, we report an innovative and simple strategy that combines a hydrothermal process with subsequent annealing to synthesize highly uniform Li2FeSiO/C hollow nanospheres. During the hydrothermal process, polystyrenen anospheres are employed not only as the template but also, more tactfully, as carb on source to form amorphous carbon layers, which will function to enhance the electronic conductivity and restrict particle aggregations. The use of the LIB Li2FeSiO4/C hollow nano spheres as a LIB cathode delivers a desired stable capacity at each rate stage, and eve n at a high rate of 10 C, the hollow nano sphere cathode can prese nt a specific discharge capacity as high as 50.5 mAh·g^-1. After 100 cycles, the capacity rete ntions at 1 and 10 C remain as high as 93% and 72%, respectively. The superior electrochemical performance is believed to be related to special architectures of the Li2FeSiO4/C hollow nano sphere cathode.
基金the National Natural Science Foundation of China(No.21975157)the China Postdoctoral Science Foundation(No.2021M692062)the Science and Technology Commission of Shanghai Municipality(No.20511104004).
文摘Concentrating active Pt atoms in the outer layers of electrocatalysts is a very effective approach to greatly reduce the Pt loading without compromising the electrocatalytic performance and the total electrochemically active surface area(ECSA)for the oxygen reduction reaction(ORR)in hydrogen-based proton-exchange membrane fuel cells.Accordingly,a facile,low-cost,and hydrogen-assisted two-step method is developed in this work,to massively prepare carbon-supported uniform,small-sized,and surfactant-free Pd nanoparticles(NPs)with ultrathin~3-atomic-layer Pt shells(Pd@Pt_(3L) NPs/C).Comprehensive physicochemical characterizations,electrochemical analyses,fuel cell tests,and density functional theory calculations reveal that,benefiting from the ultrathin Pt-shell nanostructure as well as the resulting ligand and geometric effects,Pd@Pt_(3L) NPs/C exhibits not only significantly enhanced ECSA,electrocatalytic activity,and noble-metal(NM)utilization compared to commercial Pt/C,showing 81.24 m^(2)/gPt,0.710 mA/cm^(2),and 352/577 mA/mgNM/Pt in ECSA,area-,and NM-/Pt-mass-specific activity,respectively;but also a much better electrochemical stability during the 10,000-cycle accelerated degradation test.More importantly,the corresponding 25-cm^(2) H2-air/O_(2) fuel cell with the low cathodic Pt loading of~0.152 mgPt/cm^(2)geo achieves the high power density of 0.962/1.261 W/cm^(2)geo at the current density of only 1,600 mA/cm^(2)geo,which is much higher than that for the commercial Pt/C.This work not only develops a high-performance and practical Pt-based ORR electrocatalyst,but also provides a scalable preparation method for fabricating the ultrathin Pt-shell nanostructure,which can be further expanded to other metal shells for other energy-conversion applications.
基金the National Basic Research Program of China(973)(Nos.2014CB932300 and 2014CB932303)the National Key Research and Development Program of China(No.2016YFB0101201)the National Natural Science Foundation of China(Nos.21533005 and 21503134).
文摘Un doubtedly,there remai ns an urge nt prerequisite to achieve sign ifica nt adva nces in both the specific capacity and cyclability of Li-O2 batteries for their practical application.In this work,a series of unique three-dimensional(3D)α-MnO2/MWCNTs hybrids are successfully prepared using a facile lyophilization method and investigated as the cathode of Li-O2 batteries.Thereinto,cross-1 inkedα-MnO2/MWCNTs nano composites are first syn thesized via a modified chemical route.Results dem on strate that MnO2 nano rods in the nano composites have a length of 100-400 nm and a diameter ranging from 5 to 10 nm,and more attractively,the as-lyophilized 3D MnO2/MWCNTs hybrids is uniquely constructed with large amounts of interconnected macroporous channels.The U-O2 battery with the 3D macroporous hybrid cathode that has a mass percentage of 50%ofα-MnO2 delivers a high discharge specific capacity of 8,643 mAh·g^-1 at 100 mA·g^-1,and main tains over 90 cycles before the discharge voltage drops to 2.0 V un der a controlled specific capacity of 1,000 mAh·g^-1.It is observed that when being recharged,the product of toroidal Li2O2 particles disappears and electrode surfaces are well recovered,thus confirming a good reversibility.The excellent performanee of Li-O2 battery with the 3Dα-MnO2/MWCNTs macroporous hybrid cathode is ascribed to a syn ergistic com bination betwee n the unique macroporous architecture and highly efficient bi-fun ctionalα-MnO2/MWCNTs electrocatalyst.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.21503134 and 21533005)the National Key Research and Development Program of China(2016YFB0101201).
文摘An environment-friendly,water-soluble,and cellulose based binder(lithium carboxymethyl cellulose,CMC-Li)was successfully synthesized by using Li+to replace Na+in the commercial sodium carboxymethyl cellulose(CMC-Na).Li-O2 batteries based on the CMC-Li binder present enhanced discharge specific capacities(11151 mAh/g at 100 mA/g)and a superior cycling stability(100 cycles at 200 mA/g)compared with those based on the CMC-Na binder.The enhanced performance may originate from the electrochemical stability of the CMC-Li binder and the ion-conductive nature of CMC-Li,which promotes the diffusion of Li+in the cathode and consequently retards the increase of charge transfer resistance of the cathode during cycling.The results show that the water-soluble CMC-Li binder can be a green substitute for poly(vinylidene fluoride)(PVDF)binder based on organic solvent in the lithium oxygen batteries(LOBs).