期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Purified oxygenand nitrogen-modified multi-walled carbon nanotubes as metal-free catalysts for selective olefin hydrogenation 被引量:2
1
作者 Peirong Chen Ly May Chew +3 位作者 aleksander kostka Kunpeng Xie Martin Muhler Wei Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期312-320,共9页
Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Tempe... Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 ℃ led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis. 展开更多
关键词 multi-walled carbon nanotubes nitrogen-containing functional groups oxygen-containing functional groups metal-free catalyst selectiveolefin hydrogenation
下载PDF
Laser metal deposition of refractory high-entropy alloys for high-throughput synthesis and structure-property characterization 被引量:4
2
作者 Henrik Dobbelstein Easo P George +3 位作者 Evgeny L Gurevich aleksander kostka Andreas Ostendorf Guillaume Laplanche 《International Journal of Extreme Manufacturing》 EI 2021年第1期98-120,共23页
Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions.This applies especially to refractory high-entropy alloys(RHE... Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions.This applies especially to refractory high-entropy alloys(RHEAs),which are difficult to synthesize and process by conventional methods.To evaluate a possible way to accelerate the process,high-throughput laser metal deposition was used in this work to prepare a quinary RHEA,TiZrNbHfTa,as well as its quaternary and ternary subsystems by in-situ alloying of elemental powders.Compositionally graded variants of the quinary RHEA were also analyzed.Our results show that the influence of various parameters such as powder shape and purity,alloy composition,and especially the solidification range,on the processability,microstructure,porosity,and mechanical properties can be investigated rapidly.The strength of these alloys was mainly affected by the oxygen and nitrogen contents of the starting powders,while substitutional solid solution strengthening played a minor role. 展开更多
关键词 high-entropy alloy HfNbTaTiZr REFRACTORY powder blend laser metal deposition additive manufacturing high-throughput synthesis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部