Phonon polariton resonances in the mid-infrared spectral range demonstrate properties superior to noble metal-based plasmonics,owing to smaller dissipative loss and better field confinement.However,a conventional way ...Phonon polariton resonances in the mid-infrared spectral range demonstrate properties superior to noble metal-based plasmonics,owing to smaller dissipative loss and better field confinement.However,a conventional way to excite the localized phonon resonance involves ion etching,which reduces the attainable quality factors(Q-factors)of the resonators.We show that by introducing a deep subwavelength layer of dielectric gratings on a phononic substrate,localized dipolar resonance and higher order modes with high Q-factors 96 and 195,respectively,can be excited.We further demonstrate,via experiments and simulations,that the resonant wavelength and field confinement can be controlled by coupling the localized hybrid mode with propagating surface phonon-polaritons.We also observed for the first time the coupling between a localized dipolar mode and a propagating higher-order surface phonon-polariton mode.The results will be useful in designing on-chip,low-loss,and highly integrated phononic devices in the infrared spectral domain.展开更多
Considerable attention has been paid recently to coherent control of plasmon resonances in metadevices for potential applications in all-optical light-with-light signal modulation and image processing.Previous reports...Considerable attention has been paid recently to coherent control of plasmon resonances in metadevices for potential applications in all-optical light-with-light signal modulation and image processing.Previous reports based on out-ofplane coherent control of plasmon resonances were established by modulating the position of a metadevice in standing waves.Here we show that destructive and constructive absorption can be realized in metallic nano-antennas through in-plane coherent control of plasmon resonances,which is determined by the distribution rule of electricalfield components of nano-antennas.We provide proof-of-principle demonstrations of plasmonic switching effects in a gold nanodisk monomer and dimer,and propose a plasmonic encoding strategy in a gold nanodisk chain.In-plane coherent control of plasmon resonances may open a new avenue toward promising applications in optical spectral enhancement,imaging,nanolasing,and optical communication in nanocircuits.展开更多
基金This work was supported by funding from the Ministry of Education,Singapore(Grant Nos.MOE2016-T2-2-159,MOE2016-T2-1-128,MOE2015-T2-2-007,and MOE Tier 1 RG164/15)the National Research Foundation,Competitive Research Program(No.NRF-CRP18-2017-02)+1 种基金NSFC(No.61704082)A.D.acknowledges funding support from the Singapore Ministry of Education Academic Research Funds Tier 3 under Grant No.MOE2016-T3-1-006(S).
文摘Phonon polariton resonances in the mid-infrared spectral range demonstrate properties superior to noble metal-based plasmonics,owing to smaller dissipative loss and better field confinement.However,a conventional way to excite the localized phonon resonance involves ion etching,which reduces the attainable quality factors(Q-factors)of the resonators.We show that by introducing a deep subwavelength layer of dielectric gratings on a phononic substrate,localized dipolar resonance and higher order modes with high Q-factors 96 and 195,respectively,can be excited.We further demonstrate,via experiments and simulations,that the resonant wavelength and field confinement can be controlled by coupling the localized hybrid mode with propagating surface phonon-polaritons.We also observed for the first time the coupling between a localized dipolar mode and a propagating higher-order surface phonon-polariton mode.The results will be useful in designing on-chip,low-loss,and highly integrated phononic devices in the infrared spectral domain.
基金the funding support from Singapore Ministry of Education Academic Research Fund Tier 2(grant number MOE2012-T2-2-124)and Tier 3(grant number MOE2011-T3-1-005)the funding support from the National Natural Science Foundation of China(grant numbers 61675096 and 61205042)+2 种基金the Natural Science Foundation of Jiangsu Province in China(grant number BK20141393)the funding support from Agency for Science,Technology and Research(A*STAR)SERC Pharos project(grant number 1527300025)A*STAR-JCO under project number 1437C00135.
文摘Considerable attention has been paid recently to coherent control of plasmon resonances in metadevices for potential applications in all-optical light-with-light signal modulation and image processing.Previous reports based on out-ofplane coherent control of plasmon resonances were established by modulating the position of a metadevice in standing waves.Here we show that destructive and constructive absorption can be realized in metallic nano-antennas through in-plane coherent control of plasmon resonances,which is determined by the distribution rule of electricalfield components of nano-antennas.We provide proof-of-principle demonstrations of plasmonic switching effects in a gold nanodisk monomer and dimer,and propose a plasmonic encoding strategy in a gold nanodisk chain.In-plane coherent control of plasmon resonances may open a new avenue toward promising applications in optical spectral enhancement,imaging,nanolasing,and optical communication in nanocircuits.