Mass spectrometry(MS)-based proteomics has developed into a battery of approaches that is exceedingly adept at identifying with high mass accuracy and precision any of the following:oxidative damage to proteins(redox ...Mass spectrometry(MS)-based proteomics has developed into a battery of approaches that is exceedingly adept at identifying with high mass accuracy and precision any of the following:oxidative damage to proteins(redox proteomics),phosphorylation(phosphoproteomics),ubiquitination(diglycine remnant proteomics),protein fragmentation(degradomics),and other posttranslational modifications(PTMs).Many studies have linked these PTMs to pathogenic mechanisms of neurodegeneration.To date,identifying PTMs on specific pathology-associated proteins has proven to be a valuable step in the evaluation of functional alteration of proteins and also elucidates biochemical and structural explanations for possible pathophysiological mechanisms of neurodegenerative diseases.This review provides an overview of methods applicable to the identification and quantification of PTMs on proteins and enumerates historic,recent,and potential future research endeavours in the field of proteomics furthering the understanding of PTM roles in the pathogenesis of neurodegeneration.展开更多
基金by the National Natural Science Foundation of China(No.81200842)the National Institutes of Health(U01 AG046161,AIL).
文摘Mass spectrometry(MS)-based proteomics has developed into a battery of approaches that is exceedingly adept at identifying with high mass accuracy and precision any of the following:oxidative damage to proteins(redox proteomics),phosphorylation(phosphoproteomics),ubiquitination(diglycine remnant proteomics),protein fragmentation(degradomics),and other posttranslational modifications(PTMs).Many studies have linked these PTMs to pathogenic mechanisms of neurodegeneration.To date,identifying PTMs on specific pathology-associated proteins has proven to be a valuable step in the evaluation of functional alteration of proteins and also elucidates biochemical and structural explanations for possible pathophysiological mechanisms of neurodegenerative diseases.This review provides an overview of methods applicable to the identification and quantification of PTMs on proteins and enumerates historic,recent,and potential future research endeavours in the field of proteomics furthering the understanding of PTM roles in the pathogenesis of neurodegeneration.