Participation of Pseudomonas putida-derived methyl phenol(dmp) operon and Dmp R protein in the biodegradation of phenol or other harmful, organic, toxic pollutants was investigated at a molecular level. Documentatio...Participation of Pseudomonas putida-derived methyl phenol(dmp) operon and Dmp R protein in the biodegradation of phenol or other harmful, organic, toxic pollutants was investigated at a molecular level. Documentation documents that P. putida has Dmp R protein which positively regulates dmp operon in the presence of inducers; like phenols. From the operon,phenol hydroxylase encoded by dmp N gene, participates in degrading phenols after dmp operon is expressed. For the purpose, the 3-D models of the four domains from Dmp R protein and of the DNA sequences from the two Upstream Activation Sequences(UAS)present at the promoter region of the operon were demonstrated using discrete molecular modeling techniques. The best modeled structures satisfying their stereo-chemical properties were selected in each of the cases. To stabilize the individual structures, energy optimization was performed. In the presence of inducers, probable interactions among domains and then the two independent DNA structures with the fourth domain were perused by manifold molecular docking simulations. The complex structures were made to be stable by minimizing their overall energy. Responsible amino acid residues, nucleotide bases and binding patterns for the biodegradation, were examined. In the presence of the inducers, the biodegradation process is initiated by the interaction of phe50 from the first protein domain with the inducers. Only after the interaction of the last domain with the DNA sequences individually, the operon is expressed. This novel residue level study is paramount for initiating transcription in the operon; thereby leading to expression of phenol hydroxylase followed by phenol biodegradation.展开更多
基金deeply indebted to DST-PURSE program 2012–2015 going on in Department of Biochemistry and Biophysics, University of Kalyani for providing different equipments and essential infrastructural supportDeep gratitude is extended to DBT sponsored Bioinformatics Infrastructure Facility in the Department of Biochemistry and Biophysics, University of Kalyani for the necessary support
文摘Participation of Pseudomonas putida-derived methyl phenol(dmp) operon and Dmp R protein in the biodegradation of phenol or other harmful, organic, toxic pollutants was investigated at a molecular level. Documentation documents that P. putida has Dmp R protein which positively regulates dmp operon in the presence of inducers; like phenols. From the operon,phenol hydroxylase encoded by dmp N gene, participates in degrading phenols after dmp operon is expressed. For the purpose, the 3-D models of the four domains from Dmp R protein and of the DNA sequences from the two Upstream Activation Sequences(UAS)present at the promoter region of the operon were demonstrated using discrete molecular modeling techniques. The best modeled structures satisfying their stereo-chemical properties were selected in each of the cases. To stabilize the individual structures, energy optimization was performed. In the presence of inducers, probable interactions among domains and then the two independent DNA structures with the fourth domain were perused by manifold molecular docking simulations. The complex structures were made to be stable by minimizing their overall energy. Responsible amino acid residues, nucleotide bases and binding patterns for the biodegradation, were examined. In the presence of the inducers, the biodegradation process is initiated by the interaction of phe50 from the first protein domain with the inducers. Only after the interaction of the last domain with the DNA sequences individually, the operon is expressed. This novel residue level study is paramount for initiating transcription in the operon; thereby leading to expression of phenol hydroxylase followed by phenol biodegradation.