Cobalt-manganese nano catalysts were prepared by sol-gel method. This research investigated the effects of different cobalt-manganese (Co/Mn = 1/1) loading, pH and calcination conditions on the catalytic performance...Cobalt-manganese nano catalysts were prepared by sol-gel method. This research investigated the effects of different cobalt-manganese (Co/Mn = 1/1) loading, pH and calcination conditions on the catalytic performance of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis (FTS) in a fixed bed reactor. It was found that the catalyst containing 30wt%(Co-Mn)/TiO2 was an optimal catalyst for the conversion of synthesis gas to light olefins especially propylene. The activity and selectivity of optimal catalyst were studied under different operational conditions. The results showed that the best operational conditions were H2/CO = 1/1 molar feed ratio at 250 ℃ and GHSV = 1300 h-1 un- der atmospheric pressure. Characterization of catalysts was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorlation measurements.展开更多
Nano-CaO was prepared by calcination of ball-milled chicken eggshell waste.This novel,bioactive,heterogeneous catalyst,which had high catalytic activity and reusability,was used in the green synthesis of pyrano[4,3-b]...Nano-CaO was prepared by calcination of ball-milled chicken eggshell waste.This novel,bioactive,heterogeneous catalyst,which had high catalytic activity and reusability,was used in the green synthesis of pyrano[4,3-b]pyrans via condensation of various aromatic aldehydes,malononitrile,and 4-hydroxy-6-methyl-2H-pyran-2-one at 120 °C under solvent-free conditions.The reaction proceeded to completion within 5–45 min in 93%–98% yield.The nano-CaO was fully characterized by scanning electron microscopy,X-ray powder diffraction,infrared spectroscopy,X-ray fluorescence spectroscopy,and thermal gravimetric,surface area,and elemental analyses.展开更多
Nanosized Fe-Co catalysts were prepared by co-precipitation method and studied for the conversion of synthesis gas to light olefins.In particular,the effects of a range of preparation variables such as Co/Fe molar rat...Nanosized Fe-Co catalysts were prepared by co-precipitation method and studied for the conversion of synthesis gas to light olefins.In particular,the effects of a range of preparation variables such as Co/Fe molar ratios of the precipitation solution,pH value of precipitate,temperature of precipitation,promoters and loading of optimum promoter on the structure and catalytic performance are investigated.The optimal nano catalyst for light olefins (C2-C4) production was obtained over the catalyst with Co/Fe molar ratio of 3/1 which promoted with 2 wt% K.The results show that the best operational conditions were GHSV=2200 h^-1 (H2/CO=2/1) at 260℃ under atmospheric pressure.Characterization of catalysts were carried out using X-ray diffraction (XRD),thermal gravimetric analysis (TGA),differential scanning calorimetry (DSC),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and N2 physisorption measurements such as Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods.展开更多
基金supported by the International Center for Science, High Technology & Environmental Sciences
文摘Cobalt-manganese nano catalysts were prepared by sol-gel method. This research investigated the effects of different cobalt-manganese (Co/Mn = 1/1) loading, pH and calcination conditions on the catalytic performance of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis (FTS) in a fixed bed reactor. It was found that the catalyst containing 30wt%(Co-Mn)/TiO2 was an optimal catalyst for the conversion of synthesis gas to light olefins especially propylene. The activity and selectivity of optimal catalyst were studied under different operational conditions. The results showed that the best operational conditions were H2/CO = 1/1 molar feed ratio at 250 ℃ and GHSV = 1300 h-1 un- der atmospheric pressure. Characterization of catalysts was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorlation measurements.
基金The financial support of the Iran National Science Foundation (INSF)support of the Graduate University of Advanced Technology are gratefully acknowledged (project 91004279)
文摘Nano-CaO was prepared by calcination of ball-milled chicken eggshell waste.This novel,bioactive,heterogeneous catalyst,which had high catalytic activity and reusability,was used in the green synthesis of pyrano[4,3-b]pyrans via condensation of various aromatic aldehydes,malononitrile,and 4-hydroxy-6-methyl-2H-pyran-2-one at 120 °C under solvent-free conditions.The reaction proceeded to completion within 5–45 min in 93%–98% yield.The nano-CaO was fully characterized by scanning electron microscopy,X-ray powder diffraction,infrared spectroscopy,X-ray fluorescence spectroscopy,and thermal gravimetric,surface area,and elemental analyses.
基金supported by the International Center for Science,High Technology & Environmental Sciences
文摘Nanosized Fe-Co catalysts were prepared by co-precipitation method and studied for the conversion of synthesis gas to light olefins.In particular,the effects of a range of preparation variables such as Co/Fe molar ratios of the precipitation solution,pH value of precipitate,temperature of precipitation,promoters and loading of optimum promoter on the structure and catalytic performance are investigated.The optimal nano catalyst for light olefins (C2-C4) production was obtained over the catalyst with Co/Fe molar ratio of 3/1 which promoted with 2 wt% K.The results show that the best operational conditions were GHSV=2200 h^-1 (H2/CO=2/1) at 260℃ under atmospheric pressure.Characterization of catalysts were carried out using X-ray diffraction (XRD),thermal gravimetric analysis (TGA),differential scanning calorimetry (DSC),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and N2 physisorption measurements such as Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods.