Only a small amount of work has been published on the topic of exploiting existing Long-Term Evolution-Advanced(LTE)cellular communication network infrastructure for Unmanned Aerial Vehicles(UAV)data links.This paper ...Only a small amount of work has been published on the topic of exploiting existing Long-Term Evolution-Advanced(LTE)cellular communication network infrastructure for Unmanned Aerial Vehicles(UAV)data links.This paper documents a modeling and simulation(m&s)framework that has been developed utilizing the powerful OMNeT++simulation tool for assessing the feasibility and effectiveness of this prospect in various UAV scenarios.Using multiple scenarios,we have studied the data rate requirements for communications between small and medium-sized UAVs and base stations.Using this framework,we have shown that the data rate requirements for the links are within the data throughput achieved by LTE networks.The developed framework implements a propagation model endorsed by the 3GPP LTE project team and also accurately models the high mobility of UAVs.The framework is highly configurable and extensible and boasts of automatic aggregation of results and chart plotting.The outcomes of this research may be utilized by industry for rapidly deploying highly mobile,low-cost UAVs in a wide range of applications and scenarios.展开更多
文摘Only a small amount of work has been published on the topic of exploiting existing Long-Term Evolution-Advanced(LTE)cellular communication network infrastructure for Unmanned Aerial Vehicles(UAV)data links.This paper documents a modeling and simulation(m&s)framework that has been developed utilizing the powerful OMNeT++simulation tool for assessing the feasibility and effectiveness of this prospect in various UAV scenarios.Using multiple scenarios,we have studied the data rate requirements for communications between small and medium-sized UAVs and base stations.Using this framework,we have shown that the data rate requirements for the links are within the data throughput achieved by LTE networks.The developed framework implements a propagation model endorsed by the 3GPP LTE project team and also accurately models the high mobility of UAVs.The framework is highly configurable and extensible and boasts of automatic aggregation of results and chart plotting.The outcomes of this research may be utilized by industry for rapidly deploying highly mobile,low-cost UAVs in a wide range of applications and scenarios.