China is one of the fastest growing economies worldwide. Are science and research also in the fast lane? We talked with LUO Yuan, scientist at the Institute of Coal Chemistry in Shanxi, and Axel Mosig, Professor at Ru...China is one of the fastest growing economies worldwide. Are science and research also in the fast lane? We talked with LUO Yuan, scientist at the Institute of Coal Chemistry in Shanxi, and Axel Mosig, Professor at Ruhr University in Bochum, who has first-hand experience working and living in China.展开更多
The mechanism underlying pollen tube growth involves diverse genes and molecular pathways. Alterations in the regulatory genes or pathways cause phenotypic changes reflected by cellular morphology, which can be captur...The mechanism underlying pollen tube growth involves diverse genes and molecular pathways. Alterations in the regulatory genes or pathways cause phenotypic changes reflected by cellular morphology, which can be captured using fluorescence microscopy. Determining and classifying pollen tube morphological phenotypes in such microscopic images is key to our understanding the involvement of genes and pathways. In this context, we propose a computational method to extract quantitative morphological features, and demonstrate that these features reflect morphological differences relevant to distinguish different defects of pollen tube growth. The corresponding software tool furthermore includes a novel semi-automated image segmentation approach, allowing to highly accurately identify the boundary of a pollen tube in a microscopic image.展开更多
Many classes of non-coding RNAs (ncRNAs; including Y RNAs, vault RNAs, RNase P RNAs, and MRP RNAs, as well as a novel class recently discovered in Dictyostelium discoideum) can be characterized by a pattern of short...Many classes of non-coding RNAs (ncRNAs; including Y RNAs, vault RNAs, RNase P RNAs, and MRP RNAs, as well as a novel class recently discovered in Dictyostelium discoideum) can be characterized by a pattern of short but well-conserved sequence elements that are separated by poorly conserved regions of sometimes highly variable lengths. Local alignment algorithms such as BLAST are therefore ill-suited for the discovery of new homologs of such ncRNAs in genomic sequences. The Fragrep tool instead implements an efficient algorithm for detecting the pattern fragments that occur in a given order. For each pattern fragment, the mismatch tolerance and bounds on the length of the intervening sequences can be specified separately. Furthermore, matches can be ranked by a statistically well-motivated scoring scheme.展开更多
U7 small nuclear RNA (snRNA) sequences have been described only for a handful of animal species in the past. Here we describe a computational search for functional U7 snRNA genes throughout vertebrates including the...U7 small nuclear RNA (snRNA) sequences have been described only for a handful of animal species in the past. Here we describe a computational search for functional U7 snRNA genes throughout vertebrates including the upstream sequence elements characteristic for snRNAs transcribed by polymerase Ⅱ. Based on the results of this search, we discuss the high variability of U7 snRNAs in both sequence and structure, and report on an attempt to find U7 snRNA sequences in basal deuterostomes and non-drosophilids insect genomes based on a combination of sequence, structure, and promoter features. Due to the extremely short sequence and the high variability in both sequence and structure, no unambiguous candidates were found. These results cast doubt on putative U7 homologs in even more distant organisms that are reported in the most recent release of the Rfam database.展开更多
文摘China is one of the fastest growing economies worldwide. Are science and research also in the fast lane? We talked with LUO Yuan, scientist at the Institute of Coal Chemistry in Shanxi, and Axel Mosig, Professor at Ruhr University in Bochum, who has first-hand experience working and living in China.
基金supported by a Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (2011T1S11) to A.M.the National Natural Science Foundation of China (30970266) to D.Z
文摘The mechanism underlying pollen tube growth involves diverse genes and molecular pathways. Alterations in the regulatory genes or pathways cause phenotypic changes reflected by cellular morphology, which can be captured using fluorescence microscopy. Determining and classifying pollen tube morphological phenotypes in such microscopic images is key to our understanding the involvement of genes and pathways. In this context, we propose a computational method to extract quantitative morphological features, and demonstrate that these features reflect morphological differences relevant to distinguish different defects of pollen tube growth. The corresponding software tool furthermore includes a novel semi-automated image segmentation approach, allowing to highly accurately identify the boundary of a pollen tube in a microscopic image.
文摘Many classes of non-coding RNAs (ncRNAs; including Y RNAs, vault RNAs, RNase P RNAs, and MRP RNAs, as well as a novel class recently discovered in Dictyostelium discoideum) can be characterized by a pattern of short but well-conserved sequence elements that are separated by poorly conserved regions of sometimes highly variable lengths. Local alignment algorithms such as BLAST are therefore ill-suited for the discovery of new homologs of such ncRNAs in genomic sequences. The Fragrep tool instead implements an efficient algorithm for detecting the pattern fragments that occur in a given order. For each pattern fragment, the mismatch tolerance and bounds on the length of the intervening sequences can be specified separately. Furthermore, matches can be ranked by a statistically well-motivated scoring scheme.
文摘U7 small nuclear RNA (snRNA) sequences have been described only for a handful of animal species in the past. Here we describe a computational search for functional U7 snRNA genes throughout vertebrates including the upstream sequence elements characteristic for snRNAs transcribed by polymerase Ⅱ. Based on the results of this search, we discuss the high variability of U7 snRNAs in both sequence and structure, and report on an attempt to find U7 snRNA sequences in basal deuterostomes and non-drosophilids insect genomes based on a combination of sequence, structure, and promoter features. Due to the extremely short sequence and the high variability in both sequence and structure, no unambiguous candidates were found. These results cast doubt on putative U7 homologs in even more distant organisms that are reported in the most recent release of the Rfam database.