The benchmark of a simply supported beam with damage and bending fuzzy stiffness consideration is established to be utilized for damage detection. The explicit expression describing the Rotational Angle Influence Line...The benchmark of a simply supported beam with damage and bending fuzzy stiffness consideration is established to be utilized for damage detection. The explicit expression describing the Rotational Angle Influence Lines(RAIL) of the arbitrary section in the benchmark is presented as the nonlinear relation between the moving load and the RAIL appeared, when the moving load is located on the damage area. The damage detection method is derived based on the Difference of the RAIL Curvature(DRAIL-C) prior to and following arbitrarily section damage in a simply supported beam with bending fuzzy stiffness consideration. The results demonstrate that the damage position can be located by the DRAIL-C graph and the damage extent can be calculated by the DRAIL-C curve peak. The simply supported box girder as a one-dimensional model and the simply supported truss bridge as a three-dimensional model with the bending fuzzy stiffness are simulated for the validity of the proposed method to be verified. The measuring point position and noise intensity effects are discussed in the simply supported box girder example. This paper provides a new consideration and technique for the damage detection of a simply supported bridge with bending fuzzy stiffness consideration.展开更多
A force-aided lever with a preload spring is not only force-saving but also energy-saving. Therefore, it has great potential to be applied to dry clutch actuations. However, the negative stiffness of the clutch diaphr...A force-aided lever with a preload spring is not only force-saving but also energy-saving. Therefore, it has great potential to be applied to dry clutch actuations. However, the negative stiffness of the clutch diaphragm spring introduces unstable dynamics which becomes more intensive due to the preload spring. In order to explore the intensified unstability, this paper builds dynamic models for the rotating lever coupling a negative stiffness diaphragm spring and a preload spring. The stability analysis using the Routh-Huiwitz criterion shows that the open-loop system can never be stable due to the negative stiffness. Even if the diaphragm spring stiffness is positive, the system is still unstable when the preload of the spring exceeds an upper limit. A proportionalintegral-derivative(PID) closed-loop scheme addressing this problem is designed to stabilize the system. The stability analysis for the closed-loop system shows that stable region emerges in spite of the negative stiffness; the more the negative stiffness is, the less the allowed preload is. Further, the influences of the dimensions and PID parameters on the stability condition are investigated. Finally, the transient dynamic responses of the system subjected to disturbance are compared between the unstable open-loop and stabilized closed-loop systems.展开更多
基金the National Natural Science Foundation of China(Nos.51608245 and 51568041)the Natural Science Foundation of Gansu Province(No.148RJZA026)
文摘The benchmark of a simply supported beam with damage and bending fuzzy stiffness consideration is established to be utilized for damage detection. The explicit expression describing the Rotational Angle Influence Lines(RAIL) of the arbitrary section in the benchmark is presented as the nonlinear relation between the moving load and the RAIL appeared, when the moving load is located on the damage area. The damage detection method is derived based on the Difference of the RAIL Curvature(DRAIL-C) prior to and following arbitrarily section damage in a simply supported beam with bending fuzzy stiffness consideration. The results demonstrate that the damage position can be located by the DRAIL-C graph and the damage extent can be calculated by the DRAIL-C curve peak. The simply supported box girder as a one-dimensional model and the simply supported truss bridge as a three-dimensional model with the bending fuzzy stiffness are simulated for the validity of the proposed method to be verified. The measuring point position and noise intensity effects are discussed in the simply supported box girder example. This paper provides a new consideration and technique for the damage detection of a simply supported bridge with bending fuzzy stiffness consideration.
基金the National Natural Science Foundation of China(No.51475284)
文摘A force-aided lever with a preload spring is not only force-saving but also energy-saving. Therefore, it has great potential to be applied to dry clutch actuations. However, the negative stiffness of the clutch diaphragm spring introduces unstable dynamics which becomes more intensive due to the preload spring. In order to explore the intensified unstability, this paper builds dynamic models for the rotating lever coupling a negative stiffness diaphragm spring and a preload spring. The stability analysis using the Routh-Huiwitz criterion shows that the open-loop system can never be stable due to the negative stiffness. Even if the diaphragm spring stiffness is positive, the system is still unstable when the preload of the spring exceeds an upper limit. A proportionalintegral-derivative(PID) closed-loop scheme addressing this problem is designed to stabilize the system. The stability analysis for the closed-loop system shows that stable region emerges in spite of the negative stiffness; the more the negative stiffness is, the less the allowed preload is. Further, the influences of the dimensions and PID parameters on the stability condition are investigated. Finally, the transient dynamic responses of the system subjected to disturbance are compared between the unstable open-loop and stabilized closed-loop systems.