The solution to evolution equations has developed an independent theory within nonlinear analysis dealing with the existence and approximation of such solution ( fixed point) of pseudocontractive operators and its v...The solution to evolution equations has developed an independent theory within nonlinear analysis dealing with the existence and approximation of such solution ( fixed point) of pseudocontractive operators and its variants. The object is to introduce a perturbed iteration method for proving the convergence of sequence of Lipschitzian pseudocontractive mapping using approximate fixed point technique. This iteration can be ued for nonlinear operators which are more general than Lipschitzian pseudocontractive operator and Bruck iteration fails for proving their convergence. Our results generalize the results of Chidume and Zegeye.展开更多
A foremost general contraction condition is introduced to prove the existence of fixed points for a self-mapping in a somplete metric space whose orbital diametral functions are closed. This condition covers not only ...A foremost general contraction condition is introduced to prove the existence of fixed points for a self-mapping in a somplete metric space whose orbital diametral functions are closed. This condition covers not only the Kannan type but also covers Reich, and Hardy and Roger's type contractive conditions. An example is given in its support.展开更多
The effect of resonance on the motion of two cylindrical rigid bodies has been studied in the light of Bhatnagar [1] [2] [3] and under some defined axiomatic restrictions. Here we have calculated variation in Eulerian...The effect of resonance on the motion of two cylindrical rigid bodies has been studied in the light of Bhatnagar [1] [2] [3] and under some defined axiomatic restrictions. Here we have calculated variation in Eulerian angles due to resonance in terms of orbital elements and unperturbed Eulerian angles.展开更多
文摘The solution to evolution equations has developed an independent theory within nonlinear analysis dealing with the existence and approximation of such solution ( fixed point) of pseudocontractive operators and its variants. The object is to introduce a perturbed iteration method for proving the convergence of sequence of Lipschitzian pseudocontractive mapping using approximate fixed point technique. This iteration can be ued for nonlinear operators which are more general than Lipschitzian pseudocontractive operator and Bruck iteration fails for proving their convergence. Our results generalize the results of Chidume and Zegeye.
文摘A foremost general contraction condition is introduced to prove the existence of fixed points for a self-mapping in a somplete metric space whose orbital diametral functions are closed. This condition covers not only the Kannan type but also covers Reich, and Hardy and Roger's type contractive conditions. An example is given in its support.
文摘The effect of resonance on the motion of two cylindrical rigid bodies has been studied in the light of Bhatnagar [1] [2] [3] and under some defined axiomatic restrictions. Here we have calculated variation in Eulerian angles due to resonance in terms of orbital elements and unperturbed Eulerian angles.