The Yalong River is an important river that runs across the abruptly changing terrain of the SE Tibetan Plateau. The terraces and Quaternary sediments in its valleys preserve the information of tectonic uplift, climat...The Yalong River is an important river that runs across the abruptly changing terrain of the SE Tibetan Plateau. The terraces and Quaternary sediments in its valleys preserve the information of tectonic uplift, climate changes, and landform evolution since the Middle Pleistocene. Based on geomorphological, sedimentological, and chronological investigations, 6-8 terraces are identified in the lower reaches of Yalong catchment and its tributary--the Anning River. The electron spin resonance (ESR) or optically stimulated luminescence (OSL) data on the alluvial sediments in the upper portion of terraces indicate that they formed in 1.10, 0.90, 0.72, 0.06-0.04, 0.03-0.02, and 0.01 Ma. Tectonic uplift and the climatic cycle controlled the formation of the Yalong River terraces. The former dominated the dissection depths and incision rates, whereas the latter controlled the transformation between accumulation, which developed during the glacial period, and incision, which developed during the glacial-interglacial transition. The Yalong downstream incised rapidly from 1.10 to 0.72 Ma and rapidly from 0.06 Ma until the present; the terraces developed during these two periods. The incision rates in space during the two periods indicate the uplifting extent of the Jinpingshan area, which decreases toward the east and the south. The results reveal two rapidly uplifting stages in the SE Tibetan Plateau, including an accelerated uplifting since 0.06 Ma. Since the Middle Pleistocene, the tectonic uplift of the SE and NE parts of the Tibetan Plateau is synchronous, according to the same development stages of the river terraces of the Yalong downstream and the Yellow River in the Lanzhou area of the NE Tibetan Plateau. The difference in the horizontal displacement between the Xianshuihe Fault and the Anninghe Fault bend resulted in the rapid uplift of the Jinpingshan area. The incision rate for the spatial distribution of the Yalong downstream is the geomorphologicai response of crustal shortening and uplift differences in the SE margin block of the Tibetan Plateau. The southeastward diffusion process of the Tibetan Plateau was recorded.展开更多
基金supported by the Project of China Geological Survey (grant nos.1212011120071,201211077-3 and 1212011120182)
文摘The Yalong River is an important river that runs across the abruptly changing terrain of the SE Tibetan Plateau. The terraces and Quaternary sediments in its valleys preserve the information of tectonic uplift, climate changes, and landform evolution since the Middle Pleistocene. Based on geomorphological, sedimentological, and chronological investigations, 6-8 terraces are identified in the lower reaches of Yalong catchment and its tributary--the Anning River. The electron spin resonance (ESR) or optically stimulated luminescence (OSL) data on the alluvial sediments in the upper portion of terraces indicate that they formed in 1.10, 0.90, 0.72, 0.06-0.04, 0.03-0.02, and 0.01 Ma. Tectonic uplift and the climatic cycle controlled the formation of the Yalong River terraces. The former dominated the dissection depths and incision rates, whereas the latter controlled the transformation between accumulation, which developed during the glacial period, and incision, which developed during the glacial-interglacial transition. The Yalong downstream incised rapidly from 1.10 to 0.72 Ma and rapidly from 0.06 Ma until the present; the terraces developed during these two periods. The incision rates in space during the two periods indicate the uplifting extent of the Jinpingshan area, which decreases toward the east and the south. The results reveal two rapidly uplifting stages in the SE Tibetan Plateau, including an accelerated uplifting since 0.06 Ma. Since the Middle Pleistocene, the tectonic uplift of the SE and NE parts of the Tibetan Plateau is synchronous, according to the same development stages of the river terraces of the Yalong downstream and the Yellow River in the Lanzhou area of the NE Tibetan Plateau. The difference in the horizontal displacement between the Xianshuihe Fault and the Anninghe Fault bend resulted in the rapid uplift of the Jinpingshan area. The incision rate for the spatial distribution of the Yalong downstream is the geomorphologicai response of crustal shortening and uplift differences in the SE margin block of the Tibetan Plateau. The southeastward diffusion process of the Tibetan Plateau was recorded.