Environmentally friendly, polyacrylic-based polyurethane dispersion (PUD) was synthesised using various molar ratios of polycaprolactone, dimethylolpropionic acid and tetramethyl xylene diisocyanate. Synthesis was car...Environmentally friendly, polyacrylic-based polyurethane dispersion (PUD) was synthesised using various molar ratios of polycaprolactone, dimethylolpropionic acid and tetramethyl xylene diisocyanate. Synthesis was carried out in flowing nitrogen atmosphere. The PUD’s preparations are free of NMP (n-methyl pyrrolidone), a toxic processing solvent generally used during the preparation of PUD’s. The performance of the synthesised polyurethane dispersions with varying NCO/OH molar ratio was tested on wood surface. The physical, chemical, thermal and mechanical properties such as viscosity, particle size, chemical resistance, thermal stability and taber abrasion of applied polyurethane dispersion were carried out as a function of NCO/OH molar ratio. The PUD’s preparation with NCO/OH ratio of 1.4 or 1.6 showed better performance as a wood finish and the results are described in the present study.展开更多
文摘Environmentally friendly, polyacrylic-based polyurethane dispersion (PUD) was synthesised using various molar ratios of polycaprolactone, dimethylolpropionic acid and tetramethyl xylene diisocyanate. Synthesis was carried out in flowing nitrogen atmosphere. The PUD’s preparations are free of NMP (n-methyl pyrrolidone), a toxic processing solvent generally used during the preparation of PUD’s. The performance of the synthesised polyurethane dispersions with varying NCO/OH molar ratio was tested on wood surface. The physical, chemical, thermal and mechanical properties such as viscosity, particle size, chemical resistance, thermal stability and taber abrasion of applied polyurethane dispersion were carried out as a function of NCO/OH molar ratio. The PUD’s preparation with NCO/OH ratio of 1.4 or 1.6 showed better performance as a wood finish and the results are described in the present study.