In this paper, based on 5 GHz indoor multi-user measurements, linear precoding schemes such as zero-forcing (ZF), minimum mean square error (MMSE) and successive interference cancelation (SIC) are applied in the base ...In this paper, based on 5 GHz indoor multi-user measurements, linear precoding schemes such as zero-forcing (ZF), minimum mean square error (MMSE) and successive interference cancelation (SIC) are applied in the base station in order to investigate the performance of virtual multi-input multi-output (MIMO) over single-user MIMO system. However, to form a virtual MIMO multi-user system, the resources of two users are brought together. In order to achieve a low spatial correlation, two spaced antennas in the MS have been chosen and four spaced antennas elements in BS have been selected. Therefore, the resources of two users (U1 and U2) are brought together to form a 4 × 4 virtual MIMO multi-user system with the BS. The properties of the user_1 (U1) and user_2 (U2) will be analyzed and compared to those properties of virtual MIMO multi-user system formed by U1 and U2. In most cases, the maximum achievable rate is seen with virtual MIMO multi-user compared to single-user MIMO. So virtual MIMO multi-user is desirable for boosting system capacity than single-user MIMO. .展开更多
文摘In this paper, based on 5 GHz indoor multi-user measurements, linear precoding schemes such as zero-forcing (ZF), minimum mean square error (MMSE) and successive interference cancelation (SIC) are applied in the base station in order to investigate the performance of virtual multi-input multi-output (MIMO) over single-user MIMO system. However, to form a virtual MIMO multi-user system, the resources of two users are brought together. In order to achieve a low spatial correlation, two spaced antennas in the MS have been chosen and four spaced antennas elements in BS have been selected. Therefore, the resources of two users (U1 and U2) are brought together to form a 4 × 4 virtual MIMO multi-user system with the BS. The properties of the user_1 (U1) and user_2 (U2) will be analyzed and compared to those properties of virtual MIMO multi-user system formed by U1 and U2. In most cases, the maximum achievable rate is seen with virtual MIMO multi-user compared to single-user MIMO. So virtual MIMO multi-user is desirable for boosting system capacity than single-user MIMO. .