期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
STRASS Dehazing:Spatio-Temporal Retinex-Inspired Dehazing by an Averaging of Stochastic Samples 被引量:1
1
作者 Zhe Yu bangyong sun +3 位作者 Di Liu Vincent Whannou de Dravo Margarita Khokhlova Siyuan Wu 《Journal of Renewable Materials》 SCIE EI 2022年第5期1381-1395,共15页
In this paper,we propose a neoteric and high-efficiency single image dehazing algorithm via contrast enhancement which is called STRASS(Spatio-Temporal Retinex-Inspired by an Averaging of Stochastic Samples)dehazing,i... In this paper,we propose a neoteric and high-efficiency single image dehazing algorithm via contrast enhancement which is called STRASS(Spatio-Temporal Retinex-Inspired by an Averaging of Stochastic Samples)dehazing,it is realized by constructing an efficient high-pass filter to process haze images and taking the influence of human vision system into account in image dehazing principles.The novel high-pass filter works by getting each pixel using RSR and computes the average of the samples.Then the low-pass filter resulting from the minimum envelope in STRESS framework has been replaced by the average of the samples.The final dehazed image is yielded after iterations of the high-pass filter.STRASS can be run directly without any machine learning.Extensive experimental results on datasets prove that STRASS surpass the state-of-the-arts.Image dehazing can be applied in the field of printing and packaging,our method is of great significance for image pre-processing before printing. 展开更多
关键词 Image dehazing contrast enhancement high-pass filter image reconstruction
下载PDF
Hyperspectral anomaly detection via memory‐augmented autoencoders
2
作者 Zhe Zhao bangyong sun 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1274-1287,共14页
Recently,the autoencoder(AE)based method plays a critical role in the hyperspectral anomaly detection domain.However,due to the strong generalised capacity of AE,the abnormal samples are usually reconstructed well alo... Recently,the autoencoder(AE)based method plays a critical role in the hyperspectral anomaly detection domain.However,due to the strong generalised capacity of AE,the abnormal samples are usually reconstructed well along with the normal background samples.Thus,in order to separate anomalies from the background by calculating reconstruction errors,it can be greatly beneficial to reduce the AE capability for abnormal sample reconstruction while maintaining the background reconstruction performance.A memory‐augmented autoencoder for hyperspectral anomaly detection(MAENet)is proposed to address this challenging problem.Specifically,the proposed MAENet mainly consists of an encoder,a memory module,and a decoder.First,the encoder transforms the original hyperspectral data into the low‐dimensional latent representation.Then,the latent representation is utilised to retrieve the most relevant matrix items in the memory matrix,and the retrieved matrix items will be used to replace the latent representation from the encoder.Finally,the decoder is used to reconstruct the input hyperspectral data using the retrieved memory items.With this strategy,the background can still be reconstructed well while the abnormal samples cannot.Experiments conducted on five real hyperspectral anomaly data sets demonstrate the superiority of the proposed method. 展开更多
关键词 anomaly detection hyperspectral images memory autoencoder
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部