期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microarrow sensor array with enhanced skin adhesion for transdermal continuous monitoring of glucose and reactive oxygen species
1
作者 Xinshuo Huang baoming liang +9 位作者 Shantao Zheng Feifei Wu Mengyi He Shuang Huang Jingbo Yang Qiangqiang Ouyang Fanmao Liu Jing Liu Hui-jiuan Chen Xi Xie 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期14-30,共17页
Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain an... Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients. 展开更多
关键词 Microarrow sensor array Glucose sensing Reactive oxygen species sensing Integrated system Continuous monitoring
下载PDF
3D-assembled microneedle ion sensor-based wearable system for the transdermal monitoring of physiological ion fluctuations 被引量:2
2
作者 Xinshuo Huang Shantao Zheng +5 位作者 baoming liang Mengyi He Feifei Wu Jingbo Yang Hui-jiuan Chen Xi Xie 《Microsystems & Nanoengineering》 SCIE CSCD 2023年第2期127-142,共16页
Monitoring human health is of considerable significance in biomedicine.In particular,the ion concentrations in blood are important reference indicators related to many diseases.Microneedle array-based sensors have ena... Monitoring human health is of considerable significance in biomedicine.In particular,the ion concentrations in blood are important reference indicators related to many diseases.Microneedle array-based sensors have enabled promising breakthroughs in continuous health monitoring due to their minimally invasive nature.In this study,we developed a microneedle sensing-array integrated system to continuously detect subcutaneous ions to monitor human health status in real time based on a fabrication strategy for assembling planar microneedle sheets to form 3D microneedle arrays.The limitations of preparing 3D microneedle structures with multiple electrode channels were addressed by assembling planar microneedle sheets fabricated via laser micromachining;the challenges of modifying closely spaced microneedle tips into different functionalized types of electrodes were avoided.The microneedle sensing system was sufficiently sensitive for detecting real-time changes in Ca^(2+),K^(+),and Na^(+) concentrations,and it exhibited good detection performance.The in vivo results showed that the ion-sensing microneedle array successfully monitored the fluctuations in Ca^(2+),k^(+),and Na^(+) in the interstitial fluids of rats in real time.By using an integrated circuit design,we constructed the proposed microneedle sensor into a wearable integrated monitoring system.The integrated system could potentially provide information feedback for diseases related to physiological ion changes. 展开更多
关键词 needle SYSTEM BREAKTHROUGH
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部