Although hydrofluoric acid(HF)surface treatment is known to enhance the joining of metals with polymers,there is limited information on its effect on the joining of AZ31 alloy and carbon-fiber-reinforced plastics(CFRP...Although hydrofluoric acid(HF)surface treatment is known to enhance the joining of metals with polymers,there is limited information on its effect on the joining of AZ31 alloy and carbon-fiber-reinforced plastics(CFRPs)through laser-assisted metal and plastic direct joining(LAMP).This study uses the LAMP technique to produce AZ31-CFRP joints.The joining process involves as-received AZ31,HFpretreated AZ31,and thermally oxidized HF-pretreated AZ31 alloy sheets.Furthermore,the bonding strength of joints prepared with thermally oxidized AZ31 alloy sheets is examined to ascertain the combined effect of HF treatment and thermal oxidation on bonding strength.The microstructures,surface chemical interactions,and mechanical performances of joints are investigated under tensile shear loading.Various factors,such as bubble formation,CFRP resin decomposition,and mechanical interlocking considerably affect joint strength.Additionally,surface chemical interactions between the active species on metal parts and the polar amide along with carbonyl groups of polymer play a significant role in improving joint strength.Joints prepared with surface-pretreated AZ31 alloy sheets show significant improvements in bonding strength.展开更多
Conventionally,Te has primarily been used to improve the machinability of steel and its alloys.In this work,Te was used to refine the grains of an oxide-dispersion-strengthened(ODS)steel produced by additive manufactu...Conventionally,Te has primarily been used to improve the machinability of steel and its alloys.In this work,Te was used to refine the grains of an oxide-dispersion-strengthened(ODS)steel produced by additive manufacturing(AM)with fixed processing parameters.Addition of Te to the raw powder produced an ODS steel with a fine-grained microstructure,in contrast to the ODS steel manufactured without Te.Moreover,the addition of Te resulted in superior yield strength and ultimate tensile strength,which was attributed to the combined effects of grain refinement and the finer nanoparticles(NPs)composed of Terich composite NPs and Cr-rich NPs.For the first time,the AM technique was used to obtain grain and nanoparticle sizes of~3.4μm and 6 nm,respectively,from the Te-added ODS steel.展开更多
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Science and ICT(RS-2023-00234757).
文摘Although hydrofluoric acid(HF)surface treatment is known to enhance the joining of metals with polymers,there is limited information on its effect on the joining of AZ31 alloy and carbon-fiber-reinforced plastics(CFRPs)through laser-assisted metal and plastic direct joining(LAMP).This study uses the LAMP technique to produce AZ31-CFRP joints.The joining process involves as-received AZ31,HFpretreated AZ31,and thermally oxidized HF-pretreated AZ31 alloy sheets.Furthermore,the bonding strength of joints prepared with thermally oxidized AZ31 alloy sheets is examined to ascertain the combined effect of HF treatment and thermal oxidation on bonding strength.The microstructures,surface chemical interactions,and mechanical performances of joints are investigated under tensile shear loading.Various factors,such as bubble formation,CFRP resin decomposition,and mechanical interlocking considerably affect joint strength.Additionally,surface chemical interactions between the active species on metal parts and the polar amide along with carbonyl groups of polymer play a significant role in improving joint strength.Joints prepared with surface-pretreated AZ31 alloy sheets show significant improvements in bonding strength.
基金supported by a grant from the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(NRF-2021R1A2B5B01002063)。
文摘Conventionally,Te has primarily been used to improve the machinability of steel and its alloys.In this work,Te was used to refine the grains of an oxide-dispersion-strengthened(ODS)steel produced by additive manufacturing(AM)with fixed processing parameters.Addition of Te to the raw powder produced an ODS steel with a fine-grained microstructure,in contrast to the ODS steel manufactured without Te.Moreover,the addition of Te resulted in superior yield strength and ultimate tensile strength,which was attributed to the combined effects of grain refinement and the finer nanoparticles(NPs)composed of Terich composite NPs and Cr-rich NPs.For the first time,the AM technique was used to obtain grain and nanoparticle sizes of~3.4μm and 6 nm,respectively,from the Te-added ODS steel.