This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system bas...This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system based on Hall effect sensors is designed and applied,which is capable of assigning different up-and down-stroke speeds for the RoboFalcon platform to achieve an adjustable downstroke ratio.The aerodynamic and power characteristics of the morphing-coupled flapping pattern and the conventional flapping pattern with varying downstroke ratios are measured through a wind tunnel experiment,and the corresponding aerodynamic models are developed and analyzed by the nonlinear least squares method.The relatively low power consumption of the slow-downstroke mode of this vehicle is verified through outdoor flight tests.The results of wind tunnel experiments and flight tests indicate that increased downstroke duration can improve aerodynamic and power performance for the RoboFalcon platform.展开更多
Birds and bats retract and stretch their wings dynamically during each flap in level flights, implying intriguing mechanisms for the aerodynamic performance improvement of flapping wings. A numerical investigation int...Birds and bats retract and stretch their wings dynamically during each flap in level flights, implying intriguing mechanisms for the aerodynamic performance improvement of flapping wings. A numerical investigation into the aerodynamic effects of such bio-inspired concept in forward flights has been performed based on a three-dimensional wing in plunging motion and a twosection wing in flapping motion. The currently considered Reynolds number and Strouhal number are Re=1.5×10^(5) and St=0.3, respectively. During the research, the mean angle of attack is varied in relatively wide ranges to achieve lift-thrust interconversion for the wings. The conclusive results show that dynamical spanwise retraction and stretch has induced three absolutely desirable scenarios for the oscillating wings in forward flights, namely producing more lift and consuming less power for a given thrust generation, producing more thrust and consuming less power for a given lift generation, and producing more lift and more thrust while consuming less power. Furthermore,the morphing wings have alleviated periodical aerodynamic load fluctuations compared with the non-morphing baseline. The mechanism of the aerodynamic effects of the bionic morphing mode is analyzed with the aid of field visualization. The current article is the first to reveal the absolute advantages of the bionic spanwise morphing. Hopefully, it may help comprehend the behaviors of natural fliers and provide inspirations for performance enhancement of micro artificial flappingwing vehicles.展开更多
Most flapping-wing aircraft wings use a single degree of freedom to generate lift and thrust by flapping up and down,while relying on the tail control surfaces to manage attitude.However,these aircraft have certain li...Most flapping-wing aircraft wings use a single degree of freedom to generate lift and thrust by flapping up and down,while relying on the tail control surfaces to manage attitude.However,these aircraft have certain limitations,such as poor accuracy in attitude control and inadequate roll control capabilities.This paper presents a design for an active torsional mechanism at the wing's trailing edge,which enables differential variations in the pitch angle of the left and right wings during flapping.This simple mechanical form significantly enhances the aircraft's roll control capacity.The experimental verification of this mechanism was conducted in a wind tunnel using the RoboEagle flapping-wing aerial vehicle that we developed.The study investigated the effects of the control strategy on lift,thrust,and roll moment during flapping flight.Additionally,the impact of roll control on roll moment was examined under various wind speeds,flapping frequencies,angles of attack,and wing flexibility.Furthermore,several rolling maneuver flight tests were performed to evaluate the agility of RoboEagle,utilizing both the elevon control strategy and the new roll control strategy.The results demonstrated that the new roll control strategy effectively enhances the roll control capability,thereby improving the attitude control capabilities of the flapping-wing aircraft in complex wind field environments.This conclusion is supported by a comparison of the control time,maximum roll angle,average roll angular velocity,and other relevant parameters between the two control strategies under identical roll control input.展开更多
Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant r...Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant role,which provides the sources of inspiration for designing flapping-wing vehicles.In recent years,due to the development of micro-and meso-scale manufacturing technologies,advances in components technologies have directly led to a progress of smaller Flapping-Wing Nano Air Vehicles(FWNAVs)around gram and sub-gram scales,and these air vehicles have gradually acquired insect-like locomotive strategies and capabilities.This paper will present a selective review of components technologies for ultra-lightweight flapping-wing nano air vehicles under 3 g,which covers the novel propulsion methods such as artificial muscles,flight control mechanisms,and the design paradigms of the insect-inspired wings,with a special focus on the development of the driving technologies based on artificial muscles and the progress of the biomimetic wings.The challenges involved in constructing such small flapping-wing air vehicles and recommendations for several possible future directions in terms of component technology enhancements and overall vehicle performance are also discussed in this paper.This review will provide the essential guidelines and the insights for designing a flapping-wing nano air vehicle with higher performance.展开更多
Dynamic soaring,which harvests energy from the wind,can enhance Unmanned Aerial Vehicles'(UAVs')range and endurance.However,energy harvesting efficiency issues hinder UAV applications,which can be addressed by...Dynamic soaring,which harvests energy from the wind,can enhance Unmanned Aerial Vehicles'(UAVs')range and endurance.However,energy harvesting efficiency issues hinder UAV applications,which can be addressed by wing morphing.Therefore,this study investigates the influence of albatross wing morphing during dynamic soaring.By constructing a parametric model,the shape of the albatross wing can be modeled and achieve morphing based on joints.From the video data,this paper summarizes the typical wing morphing patterns of the albatross and notices that changes primarily occur during the leeward descent phase.This paper first analyzes the aerodynamic performance of different wing morphing patterns and finds that the drag coefficient can be reduced by 7.75%with a suitable morphing pattern.This paper also explores the drag coefficient reduction mechanism and finds that downwash airflow decreases by 30.32%after wingtip anhedral.Interestingly,the lift-to-drag ratio shows minimal variation under different morphing patterns,within 2%.From the stability perspective,this study finds that the neutral point position changes after morphing.The maximum longitudinal static margin change is 4.9%,enhancing longitudinal stability by increasing the restorative moment arm.The lateral neutral point is 4.87%closer to the center of gravity,decreasing the roll and yaw moments.It can be observed that wingtip anhedral significantly increases the stability of the albatross.Moreover,a flight simulation is carried out to study the morphing influence on trajectory and energy harvesting.The results show that maximum energy gained is improved by 47.99%,and endurance is increased by 13.05%.The results also indicate that the effects of wing morphing are global rather than limited to the phase of morphing occurrence.Finally,based on the results,this paper proposes wing morphing regularity about the wingtip for UAVs.Wingtip bends downward can significantly increase the UAVs'stability and reduce drag,but the overall trajectory needs to be reconsidered after introducing wing morphing.展开更多
Introducing active flow control into the design of flapping wing is an effective way to enhance its aerodynamic performance.In this paper,a novel active flow control technology called Co-Flow Jet(CFJ)is applied to fla...Introducing active flow control into the design of flapping wing is an effective way to enhance its aerodynamic performance.In this paper,a novel active flow control technology called Co-Flow Jet(CFJ)is applied to flapping airfoils.The effect of CFJ on aerodynamic performance of flapping airfoils at low Reynolds number is numerically investigated using Unsteady Reynolds Averaged Navier-Stokes(URANS)simulation with Spalart-Allmaras(SA)turbulence model.Numerical methods are validated by a NACA6415-based CFJ airfoil case and a S809 pitching airfoil case.Then NACA6415 baseline airfoil and NACA6415-based CFJ airfoil with jet-off and jet-on are simulated in flapping motion,with Reynolds number 70,000 and reduced frequency 0.2.As a result,CFJ airfoils with jet-on generally have better lift and thrust characteristics than baseline airfoils and jet-off airfoil when Cμgreater than 0.04,which results from the CFJ effect of reducing flow separation by injecting high-energy fluid into boundary layer.Besides,typical kinematic and geometric parameters,including the reduced frequency and the positions of the suction and injection slot,are systematically studied to figure out their influence on aerodynamic performance of the CFJ airfoil.And a variable Cμjet control strategy is proposed to further improve effective propulsive efficiency.Compared with using constant Cμ,an increase of effective propulsive efficiency by22.6%has been achieved by using prescribed variable CμNACA6415-based CFJ airfoil at frequency 0.2.This study may provide some guidance to performance enhancement for Flapping wing Micro Air Vehicles(FMAV).展开更多
The force-generation mechanism of a dovelike flapping-wing micro air vehicle was studied by numerical simulation and experiment.To obtain the real deformation pattern of the flapping wing,the digital image correlation...The force-generation mechanism of a dovelike flapping-wing micro air vehicle was studied by numerical simulation and experiment.To obtain the real deformation pattern of the flapping wing,the digital image correlation technology was used to measure the dynamic deformation of the wing.The dynamic deformation data were subsequently interpolated and embedded into the CFD solver to account for the aeroelastic effects.The dynamic deformation data were further used to calculate the inertial forces by regarding the wing as a system of particles to take into account the wing flexibility.The temporal variation of the forces produced by the flapping wing was measured by a miniature load cell.The numerical results provide more flow details of the unsteady aerodynamics of the flapping wing in terms of vortex formation and evolution.The calculated results of the inertial forces are analyzed and compared with the CFD results which represent the aerodynamic forces.In addition,the total forces,i.e.,the sum of the CFD result and inertial result,are compared with the experimental results,and an overall good agreement is obtained.展开更多
Natural flyers have extraordinary flight skills and their prominent aerodynamic performance has attracted a lot of attention.However,the aerodynamic mechanism of birds’flapping wing kinematics still lacks in-depth un...Natural flyers have extraordinary flight skills and their prominent aerodynamic performance has attracted a lot of attention.However,the aerodynamic mechanism of birds’flapping wing kinematics still lacks in-depth understanding.In this paper,the aerodynamic performance of owl-like airfoil undergoing bio-inspired flapping kinematics extracted from a free-flying owl wing has been numerically investigated.The overset mesh technique is used to deal with the large range movements of flapping airfoils.The bio-inspired kinematics consist of plunging and pitching movement.A pure sinusoidal motion and a defined motion composed of plunging of sinusoidal motion and pitching of the bio-inspired kinematics are selected for comparison.The other two NACA airfoils are also selected to figure out the advantages of the owl-like airfoil.It is found that the cambered owl-like airfoil can enhance lift during the downstroke.The bio-inspired kinematics have an obvious advantage in lift generation with a presence of higher peak lift and positive lift over a wider proportion of the flapping cycle.Meanwhile,the bio-inspired motion is more economical for a lower power consumption compared with the sinusoidal motion.The sinusoidal flapping motion is better for thrust generation for a higher peak thrust value in both upstroke and downstroke,while the bio-inspired kinematics mainly generate thrust during the downstroke but produce more drag during the upstroke.The defined motion has similar lift performance with the bio-inspired kinematics,while it consumes more energy and generates less thrust.The unsteady flow field around airfoils is also analyzed to explain the corresponding phenomenon.The research in this paper is helpful to understand the flight mechanism of birds and to design a micro air vehicle with higher performance.展开更多
Accurate prediction of sonic boom is one of key challenges for the design of a low-boom supersonic aircraft. For most of available far-field prediction methods, the effect of atmospheric turbulence appearing in the pl...Accurate prediction of sonic boom is one of key challenges for the design of a low-boom supersonic aircraft. For most of available far-field prediction methods, the effect of atmospheric turbulence appearing in the planetary boundary layer cannot be considered, which results in remarkable inaccuracy of predicting ground-level sonic boom waveform. Although some efforts have been made to overcome the shortcoming, the turbulence effects are not yet well described so far. This article proposes an improved method by extending the two-dimensional Heterogeneous One-Way Approximation for the Resolution of Diffraction(HOWARD) equation to account for the axial and transverse convections of wind fluctuation as well as the effect of temperature fluctuation. The proposed method is validated by comparing the predictions with the flight-test data of JAXA D-SEND#1 LBM, which shows that the result of the proposed method is in better agreement with the flight-test data than that of the method without considering atmospheric turbulence effects.Then, distortion mechanism of sonic boom waveforms caused by atmospheric turbulence is analyzed by using the proposed method. It is indicated that the effect of turbulent convection makes uniform sonic-boom wavefronts irregular, which creates the condition of diffraction effect to perturb waveforms. Finally, the proposed method is applied to investigate the behavior of two types of waveforms given by the sonic boom minimization theory. Results show that a far-field waveform with a weaker initial shock is more beneficial for low-boom design of a supersonic aircraft.展开更多
The lack of autonomous take-off and landing capabilities of bird-like flapping-wing aerial vehicles(BFAVs)seriously restricts their further development and application.Thus,combined with the current research results o...The lack of autonomous take-off and landing capabilities of bird-like flapping-wing aerial vehicles(BFAVs)seriously restricts their further development and application.Thus,combined with the current research results on the autonomous take-off and landing technology of unmanned aerial vehicles,four types of technologies are studied,including jumping take-off and landing technology,taxiing take-off and landing technology,gliding take-off and landing technology,and vertical take-off and landing(VTOL)technology.Based on the analytic hierarchy process(AHP)-comprehensive evaluation method,a fuzzy comprehensive evaluation model for the autonomous take-off and landing scheme of a BFAV is established,and four schemes are evaluated concretely.The results show that under the existing technical conditions,the hybrid layout VTOL scheme is the best.Furthermore,the detailed design and development of the prototype of a BFAV with a four-rotor hybrid layout are carried out,and the vehicle performance is tested.The results prove that through the four-rotor hybrid layout design,the BFAV has good autonomous take-off and landing abilities.The power consumption analysis shows that for a fixed-point reconnaissance mission,when the mission radius is less than 3.38 km,the VTOL type exhibits longer mission duration than the hand-launched type.展开更多
This paper establishes and analyzes a high-fidelity nonlinear time-periodic dynamic model and the corresponding state observer for flapping vibration suppression of a novel tailless Flapping Wing Micro Air Vehicle(FWM...This paper establishes and analyzes a high-fidelity nonlinear time-periodic dynamic model and the corresponding state observer for flapping vibration suppression of a novel tailless Flapping Wing Micro Air Vehicle(FWMAV),named NPU-Tinybird.Firstly,a complete modeling of NPU-Tinybird is determined,including the aerodynamic model based on the quasi-steady method,the kinematic and dynamic model about the mechanism of flapping and attitude control,combined with the single rigid body dynamic model.Based on this,a linearized longitudinal pitch dynamic cycle-averaged model is obtained and analyzed through the methods of neural network fitting and system identification,preparing for the design of flapping vibration suppression observer.Flapping vibration is an inherent property of the tailless FWMAV,which arises from the influence of time-periodic aerodynamic forces and moments.It can be captured by attitude and position sensors on the plane,which impairs the flight performance and efficiency of flight controller and actuators.To deal with this problem,a novel state observer for flapping vibration suppression is designed.A robust optimal controller based on the linear quadratic theory is also designed to stabilize the closed-loop system.Simulation results are given to verify the performance of the observer,including the closed loop responses combined with robust optimal controller,the comparison of different parameters of observer and the comparison with several classic methods,such as Kalman filter,H-infinity filter and low-pass filter,which prove that the novel observer owns a fairly good suppression effect on flapping vibration and benefits for the improvement of flight performance and control efficiency.展开更多
The flapping motion has a great impact on the aerodynamic performance of flapping wings. In this paper, a surging motion is added to an airfoil performing pitching-plunging combined motion to figure out how it influen...The flapping motion has a great impact on the aerodynamic performance of flapping wings. In this paper, a surging motion is added to an airfoil performing pitching-plunging combined motion to figure out how it influences the lift performance and flow pattern of flapping airfoils.Firstly, the numerical methods are validated by a NACA0012 airfoil pitching case and a NACA0012 airfoil plunging case. Then, the E377m airfoil which has typical geometric characteristics of the bird-like airfoil is selected as the calculation model to study how phase differences φ1 between surging motion and plunging motion affect the aerodynamic performance of flapping airfoils. The results show that the airfoil with surging motion has comprehensively better lift performance and thrust performance than the airfoil without surging motion when 15°< φ1< 90°. It is demonstrated that surging motion has a powerful ability to improve the aerodynamic performance of flapping airfoil by adjusting φ1. Finally, to further explore how flapping airfoil improves lift performance by considering surging motion, the flapping motions of E377m airfoil with the highest lift coefficient and lift efficiency are obtained through trajectory optimization. The surging motion is removed in the highest lift case and highest lift efficiency case respectively, and the mechanism that surging motion adjusts the aerodynamic force is analyzed in detail by comparing the vortex structure and kinematic parameters. The results of this paper help reveal the aerodynamic mechanism of bird flight and guide the design of Flapping wing Micro Air Vehicles(FMAV).展开更多
The slotted wingtip structure of birds is considered to be the product of improving flight efficiency in the process of evolution. It can change the vortex structure of wingtip and improve aerodynamic efficiency. This...The slotted wingtip structure of birds is considered to be the product of improving flight efficiency in the process of evolution. It can change the vortex structure of wingtip and improve aerodynamic efficiency. This paper reports a numerical investigation of slotted wing configuration undergoing bio-inspired flapping kinematics(consisting of plunging and in-line movement)extracted from a free-flying bald eagle wing. The aim is to eluci-date the collective mechanism of the flow generated by slotted tips and the lift contribution of each tip. Specifi-cally, the objective of the study is to determine how changes in the wing spacing affect the resulting aerodynamic interaction between the slotted tips and how that affects the force generation and efficiency. Changes in the phase angle between the flapping motions of slotted tips, as well as the spacings among them,can affect the resulting vortex inter-actions. The rear tips often operates in the wake of the frontal tips and, meanwhile, the vortex generated by the movement of the rear tips promote the frontal tips.The interaction of vortices in time and space leads to wing-wing interference and the flow around slotted tips becomes complicated and unstable. The innovative study of wingtip slot in unsteady state leads us to find that the aerodynamic interaction among slotted tips makes the overall lift characteristic better than that of the unslotted wings. The slotted wing configuration can efficiently convert more energy into lift. As the flapping frequency increases, the collective feature of slotted wing with constantly changing gaps can be more advantageous to enhance lift-generation performance.展开更多
Wingtip slots,where the outer primary feathers of birds split and spread vertically,are regarded as an evolved favorable feature that could effectively improve their aerodynamic performance.They have inspired many to ...Wingtip slots,where the outer primary feathers of birds split and spread vertically,are regarded as an evolved favorable feature that could effectively improve their aerodynamic performance.They have inspired many to perform experiments and simulations as well as to relate their results to aircraft design.This paper aims to provide guidance for the research on the aerodynamic mechanism of wingtip slots.Following a review of previous wingtip slot research,four imperfections are put forward:vacancies in research content,inconsistencies in research conclusions,limitations of early research methods,and shortage of the aerodynamic mechanism analysis.On this basis,further explorations and expansion of the influence factors for steady state are needed;more attention should be poured into the application of flow field integration method to decompose drag,and evaluation of variation in induced drag seems a more rational choice.Geometric and kinematic parameters of wingtip slot structure in the unsteady state,as well as the flexibility of wingtips,should be taken into account.As for the aerodynamic mechanism of wingtip slots,the emphasis can be placed on the study of the formation,development,and evolution of wingtip vortices on slotted wings.Besides,some research strategies and feasibility analyses are proposed for each part of the research.展开更多
基金supported by National Natural Science Foundation of China under Grants No.52175277 and 12272318,and ND Basic Research Funds under Grants G2022WDwas supported in part by the Basic Research Program of Shenzhen under GrantJCYJ20190806142816524.
文摘This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system based on Hall effect sensors is designed and applied,which is capable of assigning different up-and down-stroke speeds for the RoboFalcon platform to achieve an adjustable downstroke ratio.The aerodynamic and power characteristics of the morphing-coupled flapping pattern and the conventional flapping pattern with varying downstroke ratios are measured through a wind tunnel experiment,and the corresponding aerodynamic models are developed and analyzed by the nonlinear least squares method.The relatively low power consumption of the slow-downstroke mode of this vehicle is verified through outdoor flight tests.The results of wind tunnel experiments and flight tests indicate that increased downstroke duration can improve aerodynamic and power performance for the RoboFalcon platform.
基金mainly supported by the National Natural Science Foundation of China (No. 52175277, 52275293)Resources provided by the Basic Research Program of Shenzhen, China (No. JCYJ 20190806142816524)the Guangdong Basic and Applied Basic Research Foundation, China (No. 2023A1515010774)。
文摘Birds and bats retract and stretch their wings dynamically during each flap in level flights, implying intriguing mechanisms for the aerodynamic performance improvement of flapping wings. A numerical investigation into the aerodynamic effects of such bio-inspired concept in forward flights has been performed based on a three-dimensional wing in plunging motion and a twosection wing in flapping motion. The currently considered Reynolds number and Strouhal number are Re=1.5×10^(5) and St=0.3, respectively. During the research, the mean angle of attack is varied in relatively wide ranges to achieve lift-thrust interconversion for the wings. The conclusive results show that dynamical spanwise retraction and stretch has induced three absolutely desirable scenarios for the oscillating wings in forward flights, namely producing more lift and consuming less power for a given thrust generation, producing more thrust and consuming less power for a given lift generation, and producing more lift and more thrust while consuming less power. Furthermore,the morphing wings have alleviated periodical aerodynamic load fluctuations compared with the non-morphing baseline. The mechanism of the aerodynamic effects of the bionic morphing mode is analyzed with the aid of field visualization. The current article is the first to reveal the absolute advantages of the bionic spanwise morphing. Hopefully, it may help comprehend the behaviors of natural fliers and provide inspirations for performance enhancement of micro artificial flappingwing vehicles.
基金supported by National Natural Science Foundation of China under Grants No.52175277 and 12272318ND Basic Research Funds under Grants G2022WD,Key R&D Program in Shaanxi Province of China under Grant No.2023-YBGY-372.
文摘Most flapping-wing aircraft wings use a single degree of freedom to generate lift and thrust by flapping up and down,while relying on the tail control surfaces to manage attitude.However,these aircraft have certain limitations,such as poor accuracy in attitude control and inadequate roll control capabilities.This paper presents a design for an active torsional mechanism at the wing's trailing edge,which enables differential variations in the pitch angle of the left and right wings during flapping.This simple mechanical form significantly enhances the aircraft's roll control capacity.The experimental verification of this mechanism was conducted in a wind tunnel using the RoboEagle flapping-wing aerial vehicle that we developed.The study investigated the effects of the control strategy on lift,thrust,and roll moment during flapping flight.Additionally,the impact of roll control on roll moment was examined under various wind speeds,flapping frequencies,angles of attack,and wing flexibility.Furthermore,several rolling maneuver flight tests were performed to evaluate the agility of RoboEagle,utilizing both the elevon control strategy and the new roll control strategy.The results demonstrated that the new roll control strategy effectively enhances the roll control capability,thereby improving the attitude control capabilities of the flapping-wing aircraft in complex wind field environments.This conclusion is supported by a comparison of the control time,maximum roll angle,average roll angular velocity,and other relevant parameters between the two control strategies under identical roll control input.
基金supported by the National Natural Science Foundation of China(Nos.52175277,51905431).
文摘Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant role,which provides the sources of inspiration for designing flapping-wing vehicles.In recent years,due to the development of micro-and meso-scale manufacturing technologies,advances in components technologies have directly led to a progress of smaller Flapping-Wing Nano Air Vehicles(FWNAVs)around gram and sub-gram scales,and these air vehicles have gradually acquired insect-like locomotive strategies and capabilities.This paper will present a selective review of components technologies for ultra-lightweight flapping-wing nano air vehicles under 3 g,which covers the novel propulsion methods such as artificial muscles,flight control mechanisms,and the design paradigms of the insect-inspired wings,with a special focus on the development of the driving technologies based on artificial muscles and the progress of the biomimetic wings.The challenges involved in constructing such small flapping-wing air vehicles and recommendations for several possible future directions in terms of component technology enhancements and overall vehicle performance are also discussed in this paper.This review will provide the essential guidelines and the insights for designing a flapping-wing nano air vehicle with higher performance.
基金sponsored by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX2024037)。
文摘Dynamic soaring,which harvests energy from the wind,can enhance Unmanned Aerial Vehicles'(UAVs')range and endurance.However,energy harvesting efficiency issues hinder UAV applications,which can be addressed by wing morphing.Therefore,this study investigates the influence of albatross wing morphing during dynamic soaring.By constructing a parametric model,the shape of the albatross wing can be modeled and achieve morphing based on joints.From the video data,this paper summarizes the typical wing morphing patterns of the albatross and notices that changes primarily occur during the leeward descent phase.This paper first analyzes the aerodynamic performance of different wing morphing patterns and finds that the drag coefficient can be reduced by 7.75%with a suitable morphing pattern.This paper also explores the drag coefficient reduction mechanism and finds that downwash airflow decreases by 30.32%after wingtip anhedral.Interestingly,the lift-to-drag ratio shows minimal variation under different morphing patterns,within 2%.From the stability perspective,this study finds that the neutral point position changes after morphing.The maximum longitudinal static margin change is 4.9%,enhancing longitudinal stability by increasing the restorative moment arm.The lateral neutral point is 4.87%closer to the center of gravity,decreasing the roll and yaw moments.It can be observed that wingtip anhedral significantly increases the stability of the albatross.Moreover,a flight simulation is carried out to study the morphing influence on trajectory and energy harvesting.The results show that maximum energy gained is improved by 47.99%,and endurance is increased by 13.05%.The results also indicate that the effects of wing morphing are global rather than limited to the phase of morphing occurrence.Finally,based on the results,this paper proposes wing morphing regularity about the wingtip for UAVs.Wingtip bends downward can significantly increase the UAVs'stability and reduce drag,but the overall trajectory needs to be reconsidered after introducing wing morphing.
基金co-supported by the National Key Research and Development Program of China(No.:2017YFB1300102)the National Natural Science Foundation of China(No.:11872314)。
文摘Introducing active flow control into the design of flapping wing is an effective way to enhance its aerodynamic performance.In this paper,a novel active flow control technology called Co-Flow Jet(CFJ)is applied to flapping airfoils.The effect of CFJ on aerodynamic performance of flapping airfoils at low Reynolds number is numerically investigated using Unsteady Reynolds Averaged Navier-Stokes(URANS)simulation with Spalart-Allmaras(SA)turbulence model.Numerical methods are validated by a NACA6415-based CFJ airfoil case and a S809 pitching airfoil case.Then NACA6415 baseline airfoil and NACA6415-based CFJ airfoil with jet-off and jet-on are simulated in flapping motion,with Reynolds number 70,000 and reduced frequency 0.2.As a result,CFJ airfoils with jet-on generally have better lift and thrust characteristics than baseline airfoils and jet-off airfoil when Cμgreater than 0.04,which results from the CFJ effect of reducing flow separation by injecting high-energy fluid into boundary layer.Besides,typical kinematic and geometric parameters,including the reduced frequency and the positions of the suction and injection slot,are systematically studied to figure out their influence on aerodynamic performance of the CFJ airfoil.And a variable Cμjet control strategy is proposed to further improve effective propulsive efficiency.Compared with using constant Cμ,an increase of effective propulsive efficiency by22.6%has been achieved by using prescribed variable CμNACA6415-based CFJ airfoil at frequency 0.2.This study may provide some guidance to performance enhancement for Flapping wing Micro Air Vehicles(FMAV).
基金supported by the National Natural Science Foundation of China (No. 11872314)the Key R&D Program in Shaanxi Province of China (No. 2020GY-154)
文摘The force-generation mechanism of a dovelike flapping-wing micro air vehicle was studied by numerical simulation and experiment.To obtain the real deformation pattern of the flapping wing,the digital image correlation technology was used to measure the dynamic deformation of the wing.The dynamic deformation data were subsequently interpolated and embedded into the CFD solver to account for the aeroelastic effects.The dynamic deformation data were further used to calculate the inertial forces by regarding the wing as a system of particles to take into account the wing flexibility.The temporal variation of the forces produced by the flapping wing was measured by a miniature load cell.The numerical results provide more flow details of the unsteady aerodynamics of the flapping wing in terms of vortex formation and evolution.The calculated results of the inertial forces are analyzed and compared with the CFD results which represent the aerodynamic forces.In addition,the total forces,i.e.,the sum of the CFD result and inertial result,are compared with the experimental results,and an overall good agreement is obtained.
基金supported by the National Natural Science Foundation of China(No.11872314 and U1613227)the China Scholarship Council,Key R&D Program in Shaanxi Province of China(No.2020GY-154)Natural Science Basic Research Plan in Shaanxi Province of China(No.2019JQ-394)。
文摘Natural flyers have extraordinary flight skills and their prominent aerodynamic performance has attracted a lot of attention.However,the aerodynamic mechanism of birds’flapping wing kinematics still lacks in-depth understanding.In this paper,the aerodynamic performance of owl-like airfoil undergoing bio-inspired flapping kinematics extracted from a free-flying owl wing has been numerically investigated.The overset mesh technique is used to deal with the large range movements of flapping airfoils.The bio-inspired kinematics consist of plunging and pitching movement.A pure sinusoidal motion and a defined motion composed of plunging of sinusoidal motion and pitching of the bio-inspired kinematics are selected for comparison.The other two NACA airfoils are also selected to figure out the advantages of the owl-like airfoil.It is found that the cambered owl-like airfoil can enhance lift during the downstroke.The bio-inspired kinematics have an obvious advantage in lift generation with a presence of higher peak lift and positive lift over a wider proportion of the flapping cycle.Meanwhile,the bio-inspired motion is more economical for a lower power consumption compared with the sinusoidal motion.The sinusoidal flapping motion is better for thrust generation for a higher peak thrust value in both upstroke and downstroke,while the bio-inspired kinematics mainly generate thrust during the downstroke but produce more drag during the upstroke.The defined motion has similar lift performance with the bio-inspired kinematics,while it consumes more energy and generates less thrust.The unsteady flow field around airfoils is also analyzed to explain the corresponding phenomenon.The research in this paper is helpful to understand the flight mechanism of birds and to design a micro air vehicle with higher performance.
基金supported by the National Natural Science Foundation of China(Nos.U20B2007,11972305)the Aeronautical Science Foundation of China(No.2019ZA053004)+1 种基金the Shaanxi Science Fund for Distinguished Young Scholars(No.2020JC-13)the“111”Project of China(No.B17037)。
文摘Accurate prediction of sonic boom is one of key challenges for the design of a low-boom supersonic aircraft. For most of available far-field prediction methods, the effect of atmospheric turbulence appearing in the planetary boundary layer cannot be considered, which results in remarkable inaccuracy of predicting ground-level sonic boom waveform. Although some efforts have been made to overcome the shortcoming, the turbulence effects are not yet well described so far. This article proposes an improved method by extending the two-dimensional Heterogeneous One-Way Approximation for the Resolution of Diffraction(HOWARD) equation to account for the axial and transverse convections of wind fluctuation as well as the effect of temperature fluctuation. The proposed method is validated by comparing the predictions with the flight-test data of JAXA D-SEND#1 LBM, which shows that the result of the proposed method is in better agreement with the flight-test data than that of the method without considering atmospheric turbulence effects.Then, distortion mechanism of sonic boom waveforms caused by atmospheric turbulence is analyzed by using the proposed method. It is indicated that the effect of turbulent convection makes uniform sonic-boom wavefronts irregular, which creates the condition of diffraction effect to perturb waveforms. Finally, the proposed method is applied to investigate the behavior of two types of waveforms given by the sonic boom minimization theory. Results show that a far-field waveform with a weaker initial shock is more beneficial for low-boom design of a supersonic aircraft.
基金supported in part by the National Key Research and Development Program of China(No.2017YFB1300102)the Key R&D Program in Shaanxi Province of China(No.2020ZDLGY06-05,No 2021ZDLGY09-10)the National Natural Science Foundation of China(No.11902103,No.11872314).
文摘The lack of autonomous take-off and landing capabilities of bird-like flapping-wing aerial vehicles(BFAVs)seriously restricts their further development and application.Thus,combined with the current research results on the autonomous take-off and landing technology of unmanned aerial vehicles,four types of technologies are studied,including jumping take-off and landing technology,taxiing take-off and landing technology,gliding take-off and landing technology,and vertical take-off and landing(VTOL)technology.Based on the analytic hierarchy process(AHP)-comprehensive evaluation method,a fuzzy comprehensive evaluation model for the autonomous take-off and landing scheme of a BFAV is established,and four schemes are evaluated concretely.The results show that under the existing technical conditions,the hybrid layout VTOL scheme is the best.Furthermore,the detailed design and development of the prototype of a BFAV with a four-rotor hybrid layout are carried out,and the vehicle performance is tested.The results prove that through the four-rotor hybrid layout design,the BFAV has good autonomous take-off and landing abilities.The power consumption analysis shows that for a fixed-point reconnaissance mission,when the mission radius is less than 3.38 km,the VTOL type exhibits longer mission duration than the hand-launched type.
基金financial support of the projects from National Key Research and Development Program of China(No.2017YFB1300102)National Natural Science Foundation of China(Nos.11872314 and U1613227)Youth Program of Natural Science Basic Research Plan in Shaanxi Province of China(No.2019JQ-394)。
文摘This paper establishes and analyzes a high-fidelity nonlinear time-periodic dynamic model and the corresponding state observer for flapping vibration suppression of a novel tailless Flapping Wing Micro Air Vehicle(FWMAV),named NPU-Tinybird.Firstly,a complete modeling of NPU-Tinybird is determined,including the aerodynamic model based on the quasi-steady method,the kinematic and dynamic model about the mechanism of flapping and attitude control,combined with the single rigid body dynamic model.Based on this,a linearized longitudinal pitch dynamic cycle-averaged model is obtained and analyzed through the methods of neural network fitting and system identification,preparing for the design of flapping vibration suppression observer.Flapping vibration is an inherent property of the tailless FWMAV,which arises from the influence of time-periodic aerodynamic forces and moments.It can be captured by attitude and position sensors on the plane,which impairs the flight performance and efficiency of flight controller and actuators.To deal with this problem,a novel state observer for flapping vibration suppression is designed.A robust optimal controller based on the linear quadratic theory is also designed to stabilize the closed-loop system.Simulation results are given to verify the performance of the observer,including the closed loop responses combined with robust optimal controller,the comparison of different parameters of observer and the comparison with several classic methods,such as Kalman filter,H-infinity filter and low-pass filter,which prove that the novel observer owns a fairly good suppression effect on flapping vibration and benefits for the improvement of flight performance and control efficiency.
基金supported by the National Natural Science Foundation of China(No.11872314)the Key R&D Program in Shaanxi Province of China(No.2020GY-154)。
文摘The flapping motion has a great impact on the aerodynamic performance of flapping wings. In this paper, a surging motion is added to an airfoil performing pitching-plunging combined motion to figure out how it influences the lift performance and flow pattern of flapping airfoils.Firstly, the numerical methods are validated by a NACA0012 airfoil pitching case and a NACA0012 airfoil plunging case. Then, the E377m airfoil which has typical geometric characteristics of the bird-like airfoil is selected as the calculation model to study how phase differences φ1 between surging motion and plunging motion affect the aerodynamic performance of flapping airfoils. The results show that the airfoil with surging motion has comprehensively better lift performance and thrust performance than the airfoil without surging motion when 15°< φ1< 90°. It is demonstrated that surging motion has a powerful ability to improve the aerodynamic performance of flapping airfoil by adjusting φ1. Finally, to further explore how flapping airfoil improves lift performance by considering surging motion, the flapping motions of E377m airfoil with the highest lift coefficient and lift efficiency are obtained through trajectory optimization. The surging motion is removed in the highest lift case and highest lift efficiency case respectively, and the mechanism that surging motion adjusts the aerodynamic force is analyzed in detail by comparing the vortex structure and kinematic parameters. The results of this paper help reveal the aerodynamic mechanism of bird flight and guide the design of Flapping wing Micro Air Vehicles(FMAV).
基金the support from the National Natural Science Foundation of China(Nos.11872314 and U1613227)the Key R&D Program in Shaanxi Province of China(No.2020GY-154)。
文摘The slotted wingtip structure of birds is considered to be the product of improving flight efficiency in the process of evolution. It can change the vortex structure of wingtip and improve aerodynamic efficiency. This paper reports a numerical investigation of slotted wing configuration undergoing bio-inspired flapping kinematics(consisting of plunging and in-line movement)extracted from a free-flying bald eagle wing. The aim is to eluci-date the collective mechanism of the flow generated by slotted tips and the lift contribution of each tip. Specifi-cally, the objective of the study is to determine how changes in the wing spacing affect the resulting aerodynamic interaction between the slotted tips and how that affects the force generation and efficiency. Changes in the phase angle between the flapping motions of slotted tips, as well as the spacings among them,can affect the resulting vortex inter-actions. The rear tips often operates in the wake of the frontal tips and, meanwhile, the vortex generated by the movement of the rear tips promote the frontal tips.The interaction of vortices in time and space leads to wing-wing interference and the flow around slotted tips becomes complicated and unstable. The innovative study of wingtip slot in unsteady state leads us to find that the aerodynamic interaction among slotted tips makes the overall lift characteristic better than that of the unslotted wings. The slotted wing configuration can efficiently convert more energy into lift. As the flapping frequency increases, the collective feature of slotted wing with constantly changing gaps can be more advantageous to enhance lift-generation performance.
基金support from National Natural Science Foundation of China(Grant 11872314 and U1613227)Youth Program of Natural Science Basic Research Plan in Shaanxi Province of China(Grant 2019JQ-394)Key R&D Program in Shaanxi Province of China(Grant 2020GY-154).
文摘Wingtip slots,where the outer primary feathers of birds split and spread vertically,are regarded as an evolved favorable feature that could effectively improve their aerodynamic performance.They have inspired many to perform experiments and simulations as well as to relate their results to aircraft design.This paper aims to provide guidance for the research on the aerodynamic mechanism of wingtip slots.Following a review of previous wingtip slot research,four imperfections are put forward:vacancies in research content,inconsistencies in research conclusions,limitations of early research methods,and shortage of the aerodynamic mechanism analysis.On this basis,further explorations and expansion of the influence factors for steady state are needed;more attention should be poured into the application of flow field integration method to decompose drag,and evaluation of variation in induced drag seems a more rational choice.Geometric and kinematic parameters of wingtip slot structure in the unsteady state,as well as the flexibility of wingtips,should be taken into account.As for the aerodynamic mechanism of wingtip slots,the emphasis can be placed on the study of the formation,development,and evolution of wingtip vortices on slotted wings.Besides,some research strategies and feasibility analyses are proposed for each part of the research.