Time, cost, and quality are three key control factors in rockfill dam construction, and the tradeoff among them is important. Research has focused on the construction time-cost-quality tradeoff for the planning or des...Time, cost, and quality are three key control factors in rockfill dam construction, and the tradeoff among them is important. Research has focused on the construction time-cost-quality tradeoff for the planning or design phase, built on static empirical data. However, due to its intrinsic uncertainties, rockfill dam construction is a dynamic process which requires the tradeoffto adjust dynamically to changes in construction conditions. In this study, a dynamic time-cost-quality tradeoff (DTCQT) method is proposed to balance time, cost, and quality at any stage of the construction process. A time-cost-quality tradeoff model is established that considers time cost and quality cost. Time, cost, and quality are dynamically estimated based on real-time monitoring. The analytic hierarchy process (AHP) method is applied to quantify the decision preferences among time, cost, and quality as objective weights. In addition, an improved non-dominated sorting genetic algorithm (NSGA-II) coupled with the technique for order preference by similarity to ideal solution (TOPSIS) method is used to search for the optimal compromise solution. A case study project is analyzed to demonstrate the applicability of the method, and the efficiency of the proposed optimization method is compared with that of the linear weighted sum (LWS) and NSGA-II.展开更多
Accurate prediction of drilling efficiency is critical for developing the earth-rock excavation schedule.The single machine learning(ML)prediction models usually suffer from problems including parameter sensitivity an...Accurate prediction of drilling efficiency is critical for developing the earth-rock excavation schedule.The single machine learning(ML)prediction models usually suffer from problems including parameter sensitivity and overfitting.In addition,the influence of environmental and operational factors is often ignored.In response,a novel stacking-based ensemble learning method taking into account the combined effects of those factors is proposed.Through multiple comparison tests,four models,e Xtreme gradient boosting(XGBoost),random forest(RF),back propagation neural network(BPNN)as the base learners,and support vector regression(SVR)as the meta-learner,are selected for stacking.Furthermore,an improved cuckoo search optimization(ICSO)algorithm is developed for hyper-parameter optimization of the ensemble model.The application to a real-world project demonstrates that the proposed method outperforms the popular single ML method XGBoost and the ensemble model optimized by particle swarm optimization(PSO),with 16.43%and 4.88%improvements of mean absolute percentage error(MAPE),respectively.展开更多
基金Project supported by the National Natural Science Foundation of China(No.51439005)the National Basic Research Program(973 Program)of China(No.2013CB035906)the National Natural Science Foundation of Innovation Group(No.51621092),China
基金Project supported by the National Natural Science Foundation of China(Nos.51439005 and 51409188)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51621092)
基金Project supported by the Innovative Research Groups of the National Natural Science Foundation of China (No. 51621092), the National Basic Research Program (973 Program) of China (No. 2013CB035904), and the Natural Science Foundation of China (No. 51439005)
文摘Time, cost, and quality are three key control factors in rockfill dam construction, and the tradeoff among them is important. Research has focused on the construction time-cost-quality tradeoff for the planning or design phase, built on static empirical data. However, due to its intrinsic uncertainties, rockfill dam construction is a dynamic process which requires the tradeoffto adjust dynamically to changes in construction conditions. In this study, a dynamic time-cost-quality tradeoff (DTCQT) method is proposed to balance time, cost, and quality at any stage of the construction process. A time-cost-quality tradeoff model is established that considers time cost and quality cost. Time, cost, and quality are dynamically estimated based on real-time monitoring. The analytic hierarchy process (AHP) method is applied to quantify the decision preferences among time, cost, and quality as objective weights. In addition, an improved non-dominated sorting genetic algorithm (NSGA-II) coupled with the technique for order preference by similarity to ideal solution (TOPSIS) method is used to search for the optimal compromise solution. A case study project is analyzed to demonstrate the applicability of the method, and the efficiency of the proposed optimization method is compared with that of the linear weighted sum (LWS) and NSGA-II.
基金supported by the Yalong River Joint Funds of the National Natural Science Foundation of China(No.U1965207)the National Natural Science Foundation of China(Nos.51839007,51779169,and 52009090)。
文摘Accurate prediction of drilling efficiency is critical for developing the earth-rock excavation schedule.The single machine learning(ML)prediction models usually suffer from problems including parameter sensitivity and overfitting.In addition,the influence of environmental and operational factors is often ignored.In response,a novel stacking-based ensemble learning method taking into account the combined effects of those factors is proposed.Through multiple comparison tests,four models,e Xtreme gradient boosting(XGBoost),random forest(RF),back propagation neural network(BPNN)as the base learners,and support vector regression(SVR)as the meta-learner,are selected for stacking.Furthermore,an improved cuckoo search optimization(ICSO)algorithm is developed for hyper-parameter optimization of the ensemble model.The application to a real-world project demonstrates that the proposed method outperforms the popular single ML method XGBoost and the ensemble model optimized by particle swarm optimization(PSO),with 16.43%and 4.88%improvements of mean absolute percentage error(MAPE),respectively.