期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Application of Weighted Cross-Entropy Loss Function in Intrusion Detection 被引量:2
1
作者 Ziyun Zhou Hong Huang binhao fang 《Journal of Computer and Communications》 2021年第11期1-21,共21页
The deep learning model is overfitted and the accuracy of the test set is reduced when the deep learning model is trained in the network intrusion detection parameters, due to the traditional loss function convergence... The deep learning model is overfitted and the accuracy of the test set is reduced when the deep learning model is trained in the network intrusion detection parameters, due to the traditional loss function convergence problem. Firstly, we utilize a network model architecture combining Gelu activation function and deep neural network;Secondly, the cross-entropy loss function is improved to a weighted cross entropy loss function, and at last it is applied to intrusion detection to improve the accuracy of intrusion detection. In order to compare the effect of the experiment, the KDDcup99 data set, which is commonly used in intrusion detection, is selected as the experimental data and use accuracy, precision, recall and F1-score as evaluation parameters. The experimental results show that the model using the weighted cross-entropy loss function combined with the Gelu activation function under the deep neural network architecture improves the evaluation parameters by about 2% compared with the ordinary cross-entropy loss function model. Experiments prove that the weighted cross-entropy loss function can enhance the model’s ability to discriminate samples. 展开更多
关键词 Cross-Entropy Loss Function Visualization Analysis Intrusion Detection KDD Data Set ACCURACY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部