Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility ...Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility feature of some carbonate solvents also makes them very promising for overcoming the shuttle effects of LSBs.However,regular sulfur electrodes experience undesired electrochemical mechanisms in carbonate electrolytes due to side reactions.In this study,we report a catalytic redox mechanism of sulfur in propylene carbonate(PC)electrolyte based on a compari-son study.The catalytic mechanism is characterized by the interactions between polysulfides and dual N/O functional groups on the host carbon,which largely prevents side reactions between polysulfides and the carbonate electrolyte.Such a mechanism coupled with the low-polysulfide-solubility feature leads to stable cycling of LSBs in PC electrolyte.Favorable dual N/O functional groups are identified via a density functional theory study.This work provides an alternative route for enabling LSBs in carbonate electrolytes.展开更多
Unlike regenerative-competent species that possess a remarkable intrinsic capacity to replenish lost neurons and restore neurocircuits spontaneously,the central nervous system in adult mammals lacks the ability to com...Unlike regenerative-competent species that possess a remarkable intrinsic capacity to replenish lost neurons and restore neurocircuits spontaneously,the central nervous system in adult mammals lacks the ability to compensate for the neuronal loss caused by neurodegenerative diseases or traumatic injuries resulting in permanent loss of functionality.Inspired by earlier discoveries that radial glia or astrocytes isolated from the postnatal cortex can generate neurons.展开更多
Objective:To analyze the effect of arterial embolism(AE)in patients with massive urinary system bleeding(MBUS).Methods:From September 2018 to September 2023,175 cases of MBUS patients in the emergency department of th...Objective:To analyze the effect of arterial embolism(AE)in patients with massive urinary system bleeding(MBUS).Methods:From September 2018 to September 2023,175 cases of MBUS patients in the emergency department of the hospital were randomly selected and divided into groups according to the length of stay.Among them,85 cases(September 2018–September 2020)underwent bladder irrigation treatment with aluminum potassium sulfate solution through a catheter(Group A),and 90 cases(October 2020–September 2023)underwent AE treatment(Group B).The treatment effects of the two groups were compared.Results:The treatment effectiveness of Group B is higher than that of Group A(P<0.05).The urinary hemoglobin level of Group B is lower than that of Group A at 1,6,12,and 24 hours after treatment(P<0.05).Among the 90 cases treated with AE,7 cases had a fever,with body temperatures ranging from 37.3°C to 38.9℃,with a mean temperature of 38.2±0.3℃.Four cases experienced local pain,nausea,and vomiting,while two cases of intra-iliac AE showed transient buttock pain.These patients with adverse reactions were treated symptomatically for 7 days.All patients recovered after treatment.Intravenous urography of 87 patients in June showed that the renal pelvis and calyces were in good condition,the renal function returned to normal,and the blood urea nitrogen and blood creatinine test results were within the normal range.After 1 year of follow-up,no hypertension occurred.Conclusion:AE treats MBUS patients in the emergency department with remarkable efficacy.It has the advantages of less damage to the body,rapid hemostasis,high safety,and maximum preservation of organ function.展开更多
Traditional microtubule inhibitors fail to significantly enhance+e effect of colorectal cancer;hence,new and efficient strategies are necessary.In+is study,a supramolecular nanoreactor(DOC@TA-Fe^(3+))based on tannic a...Traditional microtubule inhibitors fail to significantly enhance+e effect of colorectal cancer;hence,new and efficient strategies are necessary.In+is study,a supramolecular nanoreactor(DOC@TA-Fe^(3+))based on tannic acid(TA),iron ion(Fe^(3+)),and docetaxel(DOC)wi+microtubule inhibition,reactive oxygen species(ROS)generation,and gluta+ione peroxidase 4(GPX4)inhibition,is prepared for ferroptosis/apoptosis treatment.After internalization by CT26 cells,+e DOC@TA-Fe^(3+)nanoreactor escapes from+e lysosomes to release payloads.+e subsequent Fe^(3+)/Fe^(2+)conversion mediated by TA reducibility can trigger+e Fenton reaction to enhance+e ROS concentration.Additionally,Fe^(3+)can consume gluta+ione to repress+e activity of GPX4 to induce ferroptosis.Meanwhile,+e released DOC controls microtubule dynamics to activate+e apoptosis pa+way.+e superior in vivo antitumor efficacy of DOC@TA-Fe^(3+)nanoreactor in terms of tumor grow+inhibition and improved survival is verified in CT26 tumor-bearing mouse model.+erefore,+e nanoreactor can act as an effective apoptosis and ferroptosis inducer for application in colorectal cancer+erapy.展开更多
In the present paper, we consider the problem {-△u=u^(β_(1))|■u|^(β_(2)),in Ω,u=0,on ■Ω,u>0,in Ω,(0.1) where β_(1), β_(2) > 0 and β_(1) + β_(2) < 1, and Ω is a convex domain in R~n. The existence...In the present paper, we consider the problem {-△u=u^(β_(1))|■u|^(β_(2)),in Ω,u=0,on ■Ω,u>0,in Ω,(0.1) where β_(1), β_(2) > 0 and β_(1) + β_(2) < 1, and Ω is a convex domain in R~n. The existence, uniqueness,regularity and (2-β_(2))/(1-β_(1)-β_(2))-concavity of the positive solutions of the problem(0.1) are proven.展开更多
Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hi...Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.展开更多
Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extremeconditions. However, the origin and accurate quantification of entropy in thi...Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extremeconditions. However, the origin and accurate quantification of entropy in this situation remain long-standing challenges. In this work, a framework is established for the quantification of entropy production and partition, and their relation to microstructural change in QIC. Cu50Zr50is taken as a model material, and its compression is simulated by molecular dynamics. On the basis of atomistic simulation-informed physicalproperties and free energy, the thermodynamic path is recovered, and the entropy production and its relation to microstructural change aresuccessfully quantified by the proposed framework. Contrary to intuition, entropy production during QIC of metallic glasses is relativelyinsensitive to the strain rate ˙γ when ˙γ ranges from 7.5 × 10^(8) to 2 × 10^(9)/s, which are values reachable in QIC experiments, with a magnitudeof the order of 10^(−2)kB/atom per GPa. However, when ˙γ is extremely high (>2 × 10^(9)/s), a notable increase in entropy production rate with˙γ is observed. The Taylor–Quinney factor is found to vary with strain but not with strain rate in the simulated regime. It is demonstrated thatentropy production is dominated by the configurational part, compared with the vibrational part. In the rate-insensitive regime, the increase inconfigurational entropy exhibits a linear relation to the Shannon-entropic quantification of microstructural change, and a stretched exponential relation to the Taylor–Quinney factor. The quantification of entropy is expected to provide thermodynamic insights into the fundamentalrelation between microstructure evolution and plastic dissipation.展开更多
Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particul...Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research.展开更多
Objective:Several studies have been conducted on the effects and toxicity of adding oxaliplatin to fluorouracilbased or capecitabine-based chemoradiotherapy(CRT)regimens as significantly increasing the toxic response ...Objective:Several studies have been conducted on the effects and toxicity of adding oxaliplatin to fluorouracilbased or capecitabine-based chemoradiotherapy(CRT)regimens as significantly increasing the toxic response without benefit to survival.In this study,we further explored the role of these two postoperative CRT regimens in patients with pathological stage N2 rectal cancer.Methods:This study was a subgroup analysis of a randomized clinical trial.A total of 180 patients with pathological stage N2 rectal cancer were eligible,85 received capecitabine with radiotherapy(RT),and 95 received capecitabine and oxaliplatin with RT.Patients in both groups received adjuvant chemotherapy[capecitabine and oxaliplatin(XELOX);or fluorouracil,leucovorin,and oxaliplatin(FOLFOX)]after CRT.Results:At a median follow-up of 59.2[interquartile range(IQR),34.0−96.8]months,the three-year diseasefree survival(DFS)was 53.3%and 64.9%in the control group and the experimental group,respectively[hazard ratio(HR),0.63;95%confidence interval(95%CI),0.41−0.98;P=0.04].There was no significant difference between the groups in overall survival(OS)(HR,0.62;95%CI,0.37−1.05;P=0.07),the incidence of locoregional recurrence(HR,0.62;95%CI,0.24−1.64;P=0.33),the incidence of distant metastasis(HR,0.67;95%CI,0.42−1.06;P=0.09)and grade 3−4 acute toxicities(P=0.78).For patients with survival longer than 3 years,the conditional overall survival(COS)was significantly better in the experimental group(HR,0.39;95%CI,0.16−0.96;P=0.03).Conclusions:Our results indicated that adding oxaliplatin to capecitabine-based postoperative CRT is safe and effective in patients with pathological stage N2 rectal cancer.展开更多
A liquid Li divertor is a promising alternative for future fusion devices.In this work a new divertor model is proposed,which is processed by 3D-printing technology to accurately control the size of the internal capil...A liquid Li divertor is a promising alternative for future fusion devices.In this work a new divertor model is proposed,which is processed by 3D-printing technology to accurately control the size of the internal capillary structure.At a steady-state heat load of 10 MW m^(-2),the thermal stress of the tungsten target is within the bearing range of tungsten by finite-element simulation.In order to evaluate the wicking ability of the capillary structure,the wicking process at 600℃ was simulated by FLUENT.The result was identical to that of the corresponding experiments.Within 1 s,liquid lithium was wicked to the target surface by the capillary structure of the target and quickly spread on the target surface.During the wicking process,the average wicking mass rate of lithium should reach 0.062 g s^(-1),which could even supplement the evaporation requirement of liquid lithium under an environment>950℃.Irradiation experiments under different plasma discharge currents were carried out in a linear plasma device(SCU-PSI),and the evolution of the vapor cloud during plasma irradiation was analyzed.It was found that the target temperature tends to plateau despite the gradually increased input current,indicating that the vapor shielding effect is gradually enhanced.The irradiation experiment also confirmed that the 3D-printed tungsten structure has better heat consumption performance than a tungsten mesh structure or multichannel structure.These results reveal the application potential and feasibility of a 3D-printed porous capillary structure in plasma-facing components and provide a reference for further liquid-solid combined target designs.展开更多
The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous subs...The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.展开更多
Staphylococcus aureus is a serious foodborne pathogen threatening food safety and public health.Especially the emergence of methicillin-resistant Staphylococcus aureus(MRSA)increased the difficulty of S.aureus treatme...Staphylococcus aureus is a serious foodborne pathogen threatening food safety and public health.Especially the emergence of methicillin-resistant Staphylococcus aureus(MRSA)increased the difficulty of S.aureus treatment.Staphyloxanthin is a crucial virulence factor of S.aureus.Blocking staphyloxanthin production could help the host immune system counteract the invading S.aureus cells.In this study,we first screened for staphyloxanthin inhibitors using a virtual screening method.The outcome of the virtual screening method resulted in the identification of eugenol(300μg/mL),which significantly inhibits the staphyloxanthin production in S.aureus ATCC 29213,S.aureus Newman,MRSA ATCC 43300 and MRSA ATCC BAA1717by 84.2%,63.5%,68.1%,and 79.5%,respectively.The outcome of the growth curve assay,field-emission scanning electron,and confocal laser scanning microscopy analyses confirmed that eugenol at the test concentration did not affect the morphology and growth of S.aureus.Moreover,the survival rate of S.aureus ATCC 29213 and MRSA ATCC 43300 under H_(2)O_(2) pressure decreased to 51.9%and 45.5%in the presence of eugenol,respectively.The quantitative RT-PCR and molecular simulation studies revealed that eugenol targets staphyloxanthin biosynthesis by downregulating the transcription of the crtM gene and inhibiting the activity of the CrtM enzyme.Taken together,we first determined that eugenol was a prominent compound for staphyloxanthin inhibitor to combat S.aureus especially MRSA infections.展开更多
Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions...Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions are irradiated on a thyristor device for a long time,the electrical characteristics of the device change,which may eventually cause irreversible damage.In this study,with the thyristor switch of the commutation circuit in the quench protection system(QPS)of a fusion device as the study object,the relationship between the internal physical structure and external electrical parameters of the irradiated thyristor is established.Subsequently,a series of targeted thyristor physical simulations and neutron irradiation experiments are conducted to verify the accuracy of the theoretical analysis.In addition,the effect of irradiated thyristor electrical characteristic changes on the entire QPS is studied by accurate simulation,providing valuable guidelines for the maintenance and renovation of the QPS.展开更多
1.Objective The Central Asian Orogenic Belt(CAOB),which is located between the European craton,Siberian craton,and Tarim-North China craton(Fig.1a),is the largest phanerozoic accretionary orogen in the world.It result...1.Objective The Central Asian Orogenic Belt(CAOB),which is located between the European craton,Siberian craton,and Tarim-North China craton(Fig.1a),is the largest phanerozoic accretionary orogen in the world.It resulted from the longterm subduction and accretion of the Paleo-Asian Ocean(PAO).The PAO has been in existence since at least the late Mesoproterozoic(about 1020 Ma).However,there has been debate about the closing time of the PAO.展开更多
The Asian leaf litter toad genus Leptobrachella contains more than 100 species widely distributed in southwestern Asia.However,the systematic profiles of this group remain unresolved.Osteological morphology is importa...The Asian leaf litter toad genus Leptobrachella contains more than 100 species widely distributed in southwestern Asia.However,the systematic profiles of this group remain unresolved.Osteological morphology is important for taxonomic and phylogenetic studies.However,few studies have focused on the osteology of the genus.Herein,we comprehensively described the osteological features of a representative species L.bijie based on micro-CT scanning and double-staining methods.The results show that the skull of adult L.bijie is well-ossified,exhibiting sexual dimorphism and minimal intraspecific variation.The skull length is slightly greater than the width,with the maxilla slightly overlapping with the quadratojugal.The nasal connects with the sphenethmoid in males,but only part or not connects with the sphenethmoid in females.The transverse processes of the sacrum are robust and symmetrically butterfly-shaped,and the presacral vertebrae are procoelous.The pectoral girdle is arciferous.The phalangeal formula is 2-2-3-3 for the hand,and 2-2-3-4-3 for the foot.This study provides the first detailed and comprehensive osteological accounts of the genus Leptobrachella.展开更多
In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furn...In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furnace”were subjected to thermogravimetric experiments,and the combustion characteristics and kinetic characteristics were analyzed.The result shows that“tobacco stem semi-tar inside furnace”has the highest value and“tobacco stem tar out-of-furnace”is has the lowest value on ignition characteristics,combustion characteristics and combustible stability;“tobacco stem semi-tar inside furnace”has the lowest value and“tobacco stem tar outside furnace”has the highest value on burnout characteristics;“tobacco stem tar outside furnace”has the highest value and“tobacco stem tar inside furnace”has the lowest value on integrated combustion characteristics.展开更多
Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/appro...Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system.展开更多
Background:Melanoma is a deadly skin tumor resulting from the malignant transformation of melanocytes.It is highly malignant and invasive,with the highest mortality rate among skin cancers.Acalypha australis L.(AAL),a...Background:Melanoma is a deadly skin tumor resulting from the malignant transformation of melanocytes.It is highly malignant and invasive,with the highest mortality rate among skin cancers.Acalypha australis L.(AAL),a plant with dual medicinal and culinary purposes,is commonly regarded as an edible wild vegetable in southern China.Additionally,AAL has a long history of medicinal use in China,often employed for its hemostatic,anti-diarrheal,and anti-inflammatory properties.Modern pharmacology has demonstrated that AAL possesses functions such as weight loss,antimicrobial activity,antiviral effects,and treatment for ulcerative colitis.However,there is currently no research available regarding its effectiveness and mechanisms of action on melanoma.Methods:In this investigation,we used methyl thiazolyl tetrazolium assay to detect cell viability,transwell assay to detect cell migration and invasion ability,and Western blot assay to detect relevant signaling pathways.Results:The present study reveals that 2 mg/mL AAL effectively suppresses the metastasis of B16 cells,while simultaneously triggering the expression of key apoptosis-related proteins,including Bcl-2,Bax,and cleaved caspased 3.Subsequent investigations demonstrate that AAL exerts this inhibitory effect via the PI3K/AKT signal transduction pathway,as evidenced by the observed deficits in Ras,AKT,p-AKT,and PI3K expression levels.Conclusion:These findings indicated that AAL could be a valuable therapeutic option for reducing the metastatic potential of B16 melanoma cells.展开更多
Objective:To explore the effect of transarterial chemoembolization(TACE)+CT-guided microwave ablation(MWA)on treating patients with primary liver cancer.Methods:78 primary liver cancer cases were enrolled and divided ...Objective:To explore the effect of transarterial chemoembolization(TACE)+CT-guided microwave ablation(MWA)on treating patients with primary liver cancer.Methods:78 primary liver cancer cases were enrolled and divided into groups according to their assigned surgical plans.The control group was treated with TACE alone,and the observation group was treated with TACE+CT-guided MWA.The efficacy of the treatment and the liver function indicators and follow-up results of the patients of the two groups were compared.Results:The efficacy of the treatment received by the observation group was higher than that of the control group.Besides,the patients in the observation group exhibited better improvement in liver function indicators after 3 months of treatment.Furthermore,the survival rates of 1 and 2 years after surgery of the observation group were all higher than those of the control group(P<0.05).Conclusion:TACE combined with CT-guided MWA is more effective in treating primary liver cancer compared to TACE alone.Besides,it resulted in better improvement of liver function and long-term survival rate.Therefore,this treatment regime should be popularized.展开更多
文摘Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility feature of some carbonate solvents also makes them very promising for overcoming the shuttle effects of LSBs.However,regular sulfur electrodes experience undesired electrochemical mechanisms in carbonate electrolytes due to side reactions.In this study,we report a catalytic redox mechanism of sulfur in propylene carbonate(PC)electrolyte based on a compari-son study.The catalytic mechanism is characterized by the interactions between polysulfides and dual N/O functional groups on the host carbon,which largely prevents side reactions between polysulfides and the carbonate electrolyte.Such a mechanism coupled with the low-polysulfide-solubility feature leads to stable cycling of LSBs in PC electrolyte.Favorable dual N/O functional groups are identified via a density functional theory study.This work provides an alternative route for enabling LSBs in carbonate electrolytes.
基金supported by National Institutes of Health grants R01 EY024986 and R01 EY028921,an unrestricted challenge grant from Research to Prevent Blindnessthe New York Eye and Ear Infirmary FoundationThe Harold W.McGraw,Jr.Family Foundation for Vision Research(to BC)。
文摘Unlike regenerative-competent species that possess a remarkable intrinsic capacity to replenish lost neurons and restore neurocircuits spontaneously,the central nervous system in adult mammals lacks the ability to compensate for the neuronal loss caused by neurodegenerative diseases or traumatic injuries resulting in permanent loss of functionality.Inspired by earlier discoveries that radial glia or astrocytes isolated from the postnatal cortex can generate neurons.
文摘Objective:To analyze the effect of arterial embolism(AE)in patients with massive urinary system bleeding(MBUS).Methods:From September 2018 to September 2023,175 cases of MBUS patients in the emergency department of the hospital were randomly selected and divided into groups according to the length of stay.Among them,85 cases(September 2018–September 2020)underwent bladder irrigation treatment with aluminum potassium sulfate solution through a catheter(Group A),and 90 cases(October 2020–September 2023)underwent AE treatment(Group B).The treatment effects of the two groups were compared.Results:The treatment effectiveness of Group B is higher than that of Group A(P<0.05).The urinary hemoglobin level of Group B is lower than that of Group A at 1,6,12,and 24 hours after treatment(P<0.05).Among the 90 cases treated with AE,7 cases had a fever,with body temperatures ranging from 37.3°C to 38.9℃,with a mean temperature of 38.2±0.3℃.Four cases experienced local pain,nausea,and vomiting,while two cases of intra-iliac AE showed transient buttock pain.These patients with adverse reactions were treated symptomatically for 7 days.All patients recovered after treatment.Intravenous urography of 87 patients in June showed that the renal pelvis and calyces were in good condition,the renal function returned to normal,and the blood urea nitrogen and blood creatinine test results were within the normal range.After 1 year of follow-up,no hypertension occurred.Conclusion:AE treats MBUS patients in the emergency department with remarkable efficacy.It has the advantages of less damage to the body,rapid hemostasis,high safety,and maximum preservation of organ function.
基金supported by the National Natural Science Foundation of China(Grant Nos.:31971308,81960769,and U1903211)National S&T Major Project(Grant No.:2019ZX09301-147),Luzhou Science and Technology Plan(Grant No.:2018CDLZ10)Sichuan Science and Technology Program(Grant No.:2021YFS0081).
文摘Traditional microtubule inhibitors fail to significantly enhance+e effect of colorectal cancer;hence,new and efficient strategies are necessary.In+is study,a supramolecular nanoreactor(DOC@TA-Fe^(3+))based on tannic acid(TA),iron ion(Fe^(3+)),and docetaxel(DOC)wi+microtubule inhibition,reactive oxygen species(ROS)generation,and gluta+ione peroxidase 4(GPX4)inhibition,is prepared for ferroptosis/apoptosis treatment.After internalization by CT26 cells,+e DOC@TA-Fe^(3+)nanoreactor escapes from+e lysosomes to release payloads.+e subsequent Fe^(3+)/Fe^(2+)conversion mediated by TA reducibility can trigger+e Fenton reaction to enhance+e ROS concentration.Additionally,Fe^(3+)can consume gluta+ione to repress+e activity of GPX4 to induce ferroptosis.Meanwhile,+e released DOC controls microtubule dynamics to activate+e apoptosis pa+way.+e superior in vivo antitumor efficacy of DOC@TA-Fe^(3+)nanoreactor in terms of tumor grow+inhibition and improved survival is verified in CT26 tumor-bearing mouse model.+erefore,+e nanoreactor can act as an effective apoptosis and ferroptosis inducer for application in colorectal cancer+erapy.
基金The first author and the third author were supported by the National Natural Science Foundation of China (11761030)the Cultivation Project for High-Level Scientific Research Achievements of Hubei Minzu University (PY20002)The second author was supported by the China Postdoctoral Science Foundation (2021M690773)。
文摘In the present paper, we consider the problem {-△u=u^(β_(1))|■u|^(β_(2)),in Ω,u=0,on ■Ω,u>0,in Ω,(0.1) where β_(1), β_(2) > 0 and β_(1) + β_(2) < 1, and Ω is a convex domain in R~n. The existence, uniqueness,regularity and (2-β_(2))/(1-β_(1)-β_(2))-concavity of the positive solutions of the problem(0.1) are proven.
基金supported by the Key Projects of the National Natural Science Foundation of China,No.11932013(to XC)Key Military Logistics Research Projects,No.B WJ21J002(to XC)+4 种基金the Key projects of the Special Zone for National Defence Innovation,No.21-163-12-ZT006002-13(to XC)the National Nature Science Foundation of China No.82272255(to XC)the National Defense Science and Technology Outstanding Youth Science Fund Program,No.2021-JCIQ-ZQ-035(to XC)the Scientific Research Innovation Team Project of Armed Police Characteristic Medical Center,No.KYCXTD0104(to ZL)the National Natural Science Foundation of China Youth Fund,No.82004467(to BC)。
文摘Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.
基金supported by the NSAF under Grant No.U1830206,the National Key R&D Program of China under Grant No.2017YFA0403200the National Natural Science Foundation of China under Grant Nos.11874424 and 12104507the Science and Technology Innovation Program of Hunan Province under Grant No.2021RC4026.
文摘Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extremeconditions. However, the origin and accurate quantification of entropy in this situation remain long-standing challenges. In this work, a framework is established for the quantification of entropy production and partition, and their relation to microstructural change in QIC. Cu50Zr50is taken as a model material, and its compression is simulated by molecular dynamics. On the basis of atomistic simulation-informed physicalproperties and free energy, the thermodynamic path is recovered, and the entropy production and its relation to microstructural change aresuccessfully quantified by the proposed framework. Contrary to intuition, entropy production during QIC of metallic glasses is relativelyinsensitive to the strain rate ˙γ when ˙γ ranges from 7.5 × 10^(8) to 2 × 10^(9)/s, which are values reachable in QIC experiments, with a magnitudeof the order of 10^(−2)kB/atom per GPa. However, when ˙γ is extremely high (>2 × 10^(9)/s), a notable increase in entropy production rate with˙γ is observed. The Taylor–Quinney factor is found to vary with strain but not with strain rate in the simulated regime. It is demonstrated thatentropy production is dominated by the configurational part, compared with the vibrational part. In the rate-insensitive regime, the increase inconfigurational entropy exhibits a linear relation to the Shannon-entropic quantification of microstructural change, and a stretched exponential relation to the Taylor–Quinney factor. The quantification of entropy is expected to provide thermodynamic insights into the fundamentalrelation between microstructure evolution and plastic dissipation.
基金Supported by National Natural Science Foundation of China (Grant No.U21A20122)Zhejiang Provincial Natural Science Foundation of China (Grant No.LY22E050012)+2 种基金China Postdoctoral Science Foundation (Grant Nos.2023T160580,2023M743102)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems of China (Grant No.GZKF-202225)Students in Zhejiang Province Science and Technology Innovation Plan of China (Grant No.2023R403073)。
文摘Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research.
基金supported by grants from Sanming Project of Medicine in Shenzhen(No.SZSM202211030)the Science and Technology Department Basic Research Project of Shanxi(No.202203021221284)。
文摘Objective:Several studies have been conducted on the effects and toxicity of adding oxaliplatin to fluorouracilbased or capecitabine-based chemoradiotherapy(CRT)regimens as significantly increasing the toxic response without benefit to survival.In this study,we further explored the role of these two postoperative CRT regimens in patients with pathological stage N2 rectal cancer.Methods:This study was a subgroup analysis of a randomized clinical trial.A total of 180 patients with pathological stage N2 rectal cancer were eligible,85 received capecitabine with radiotherapy(RT),and 95 received capecitabine and oxaliplatin with RT.Patients in both groups received adjuvant chemotherapy[capecitabine and oxaliplatin(XELOX);or fluorouracil,leucovorin,and oxaliplatin(FOLFOX)]after CRT.Results:At a median follow-up of 59.2[interquartile range(IQR),34.0−96.8]months,the three-year diseasefree survival(DFS)was 53.3%and 64.9%in the control group and the experimental group,respectively[hazard ratio(HR),0.63;95%confidence interval(95%CI),0.41−0.98;P=0.04].There was no significant difference between the groups in overall survival(OS)(HR,0.62;95%CI,0.37−1.05;P=0.07),the incidence of locoregional recurrence(HR,0.62;95%CI,0.24−1.64;P=0.33),the incidence of distant metastasis(HR,0.67;95%CI,0.42−1.06;P=0.09)and grade 3−4 acute toxicities(P=0.78).For patients with survival longer than 3 years,the conditional overall survival(COS)was significantly better in the experimental group(HR,0.39;95%CI,0.16−0.96;P=0.03).Conclusions:Our results indicated that adding oxaliplatin to capecitabine-based postoperative CRT is safe and effective in patients with pathological stage N2 rectal cancer.
基金funded by the China Postdoctoral Science Foundation(No.2019M663487)the National Key Research and Development Program of China(No.2022YFE03130000)。
文摘A liquid Li divertor is a promising alternative for future fusion devices.In this work a new divertor model is proposed,which is processed by 3D-printing technology to accurately control the size of the internal capillary structure.At a steady-state heat load of 10 MW m^(-2),the thermal stress of the tungsten target is within the bearing range of tungsten by finite-element simulation.In order to evaluate the wicking ability of the capillary structure,the wicking process at 600℃ was simulated by FLUENT.The result was identical to that of the corresponding experiments.Within 1 s,liquid lithium was wicked to the target surface by the capillary structure of the target and quickly spread on the target surface.During the wicking process,the average wicking mass rate of lithium should reach 0.062 g s^(-1),which could even supplement the evaporation requirement of liquid lithium under an environment>950℃.Irradiation experiments under different plasma discharge currents were carried out in a linear plasma device(SCU-PSI),and the evolution of the vapor cloud during plasma irradiation was analyzed.It was found that the target temperature tends to plateau despite the gradually increased input current,indicating that the vapor shielding effect is gradually enhanced.The irradiation experiment also confirmed that the 3D-printed tungsten structure has better heat consumption performance than a tungsten mesh structure or multichannel structure.These results reveal the application potential and feasibility of a 3D-printed porous capillary structure in plasma-facing components and provide a reference for further liquid-solid combined target designs.
基金supported by Key R&D Program of Zhejiang Province,China (No.2022C03061)the National Natural Science Foundation of China (No.52074204)the Fundamental Research Funds for the Central Universities (No.2023-vb-032).
文摘The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.
基金supported by the National Natural Science Foundation of China (31972169 and 32001798)。
文摘Staphylococcus aureus is a serious foodborne pathogen threatening food safety and public health.Especially the emergence of methicillin-resistant Staphylococcus aureus(MRSA)increased the difficulty of S.aureus treatment.Staphyloxanthin is a crucial virulence factor of S.aureus.Blocking staphyloxanthin production could help the host immune system counteract the invading S.aureus cells.In this study,we first screened for staphyloxanthin inhibitors using a virtual screening method.The outcome of the virtual screening method resulted in the identification of eugenol(300μg/mL),which significantly inhibits the staphyloxanthin production in S.aureus ATCC 29213,S.aureus Newman,MRSA ATCC 43300 and MRSA ATCC BAA1717by 84.2%,63.5%,68.1%,and 79.5%,respectively.The outcome of the growth curve assay,field-emission scanning electron,and confocal laser scanning microscopy analyses confirmed that eugenol at the test concentration did not affect the morphology and growth of S.aureus.Moreover,the survival rate of S.aureus ATCC 29213 and MRSA ATCC 43300 under H_(2)O_(2) pressure decreased to 51.9%and 45.5%in the presence of eugenol,respectively.The quantitative RT-PCR and molecular simulation studies revealed that eugenol targets staphyloxanthin biosynthesis by downregulating the transcription of the crtM gene and inhibiting the activity of the CrtM enzyme.Taken together,we first determined that eugenol was a prominent compound for staphyloxanthin inhibitor to combat S.aureus especially MRSA infections.
基金supported by the Fundamental Research Funds for the Central University(No.JZ2023HGTA0182)Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)。
文摘Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions are irradiated on a thyristor device for a long time,the electrical characteristics of the device change,which may eventually cause irreversible damage.In this study,with the thyristor switch of the commutation circuit in the quench protection system(QPS)of a fusion device as the study object,the relationship between the internal physical structure and external electrical parameters of the irradiated thyristor is established.Subsequently,a series of targeted thyristor physical simulations and neutron irradiation experiments are conducted to verify the accuracy of the theoretical analysis.In addition,the effect of irradiated thyristor electrical characteristic changes on the entire QPS is studied by accurate simulation,providing valuable guidelines for the maintenance and renovation of the QPS.
基金supported by the Key R&D Program of Shaanxi Province(2024GH-ZDXM-26,2022KW-19)Key R&D Program of Xinjiang Province(2022A03010-2)geological survey projects of China Geological Survey(DD20160105,DD20190445)。
文摘1.Objective The Central Asian Orogenic Belt(CAOB),which is located between the European craton,Siberian craton,and Tarim-North China craton(Fig.1a),is the largest phanerozoic accretionary orogen in the world.It resulted from the longterm subduction and accretion of the Paleo-Asian Ocean(PAO).The PAO has been in existence since at least the late Mesoproterozoic(about 1020 Ma).However,there has been debate about the closing time of the PAO.
基金supported by West Light Foundation of The Chinese Academy of Sciences(Grant No.2021XBZG_XBQNXZ_A_006)National Natural Sciences Foundation of China(Grant Nos.:32270498 and 32070426)China Biodiversity Observation Networks(Sino BON-Amphibian and Reptile).
文摘The Asian leaf litter toad genus Leptobrachella contains more than 100 species widely distributed in southwestern Asia.However,the systematic profiles of this group remain unresolved.Osteological morphology is important for taxonomic and phylogenetic studies.However,few studies have focused on the osteology of the genus.Herein,we comprehensively described the osteological features of a representative species L.bijie based on micro-CT scanning and double-staining methods.The results show that the skull of adult L.bijie is well-ossified,exhibiting sexual dimorphism and minimal intraspecific variation.The skull length is slightly greater than the width,with the maxilla slightly overlapping with the quadratojugal.The nasal connects with the sphenethmoid in males,but only part or not connects with the sphenethmoid in females.The transverse processes of the sacrum are robust and symmetrically butterfly-shaped,and the presacral vertebrae are procoelous.The pectoral girdle is arciferous.The phalangeal formula is 2-2-3-3 for the hand,and 2-2-3-4-3 for the foot.This study provides the first detailed and comprehensive osteological accounts of the genus Leptobrachella.
基金the Financial Supported by Hunan Provincial Natural Science Foundation of China(No.2023JJ50224)2021–2022 Hunan Province Enterprise Science and Technology Commissioner Program Project(No.2021GK5046)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2022JJ50013)Hunan Provincial Natural Science Foundation of China(No.2022JJ50041).
文摘In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furnace”were subjected to thermogravimetric experiments,and the combustion characteristics and kinetic characteristics were analyzed.The result shows that“tobacco stem semi-tar inside furnace”has the highest value and“tobacco stem tar out-of-furnace”is has the lowest value on ignition characteristics,combustion characteristics and combustible stability;“tobacco stem semi-tar inside furnace”has the lowest value and“tobacco stem tar outside furnace”has the highest value on burnout characteristics;“tobacco stem tar outside furnace”has the highest value and“tobacco stem tar inside furnace”has the lowest value on integrated combustion characteristics.
基金funded by the Fund Project of China Academy of Railway Sciences Corporation Limited[Grant No.2022YJ194,2023YJ254].
文摘Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system.
基金This work was supported by the Hunan Education Department Project(NO.20A390)National Innovation and Entrepreneurship Training Program(S202010548007).
文摘Background:Melanoma is a deadly skin tumor resulting from the malignant transformation of melanocytes.It is highly malignant and invasive,with the highest mortality rate among skin cancers.Acalypha australis L.(AAL),a plant with dual medicinal and culinary purposes,is commonly regarded as an edible wild vegetable in southern China.Additionally,AAL has a long history of medicinal use in China,often employed for its hemostatic,anti-diarrheal,and anti-inflammatory properties.Modern pharmacology has demonstrated that AAL possesses functions such as weight loss,antimicrobial activity,antiviral effects,and treatment for ulcerative colitis.However,there is currently no research available regarding its effectiveness and mechanisms of action on melanoma.Methods:In this investigation,we used methyl thiazolyl tetrazolium assay to detect cell viability,transwell assay to detect cell migration and invasion ability,and Western blot assay to detect relevant signaling pathways.Results:The present study reveals that 2 mg/mL AAL effectively suppresses the metastasis of B16 cells,while simultaneously triggering the expression of key apoptosis-related proteins,including Bcl-2,Bax,and cleaved caspased 3.Subsequent investigations demonstrate that AAL exerts this inhibitory effect via the PI3K/AKT signal transduction pathway,as evidenced by the observed deficits in Ras,AKT,p-AKT,and PI3K expression levels.Conclusion:These findings indicated that AAL could be a valuable therapeutic option for reducing the metastatic potential of B16 melanoma cells.
文摘Objective:To explore the effect of transarterial chemoembolization(TACE)+CT-guided microwave ablation(MWA)on treating patients with primary liver cancer.Methods:78 primary liver cancer cases were enrolled and divided into groups according to their assigned surgical plans.The control group was treated with TACE alone,and the observation group was treated with TACE+CT-guided MWA.The efficacy of the treatment and the liver function indicators and follow-up results of the patients of the two groups were compared.Results:The efficacy of the treatment received by the observation group was higher than that of the control group.Besides,the patients in the observation group exhibited better improvement in liver function indicators after 3 months of treatment.Furthermore,the survival rates of 1 and 2 years after surgery of the observation group were all higher than those of the control group(P<0.05).Conclusion:TACE combined with CT-guided MWA is more effective in treating primary liver cancer compared to TACE alone.Besides,it resulted in better improvement of liver function and long-term survival rate.Therefore,this treatment regime should be popularized.