This paper proposes a method of small reservoir flood detention modeling that utilizes data from the American land resources satellite Landsat TM/ETM+. Precipitation and potential evapotranspiration are taken as the c...This paper proposes a method of small reservoir flood detention modeling that utilizes data from the American land resources satellite Landsat TM/ETM+. Precipitation and potential evapotranspiration are taken as the control conditions in this method on the basis of basin terrain classification. The objective of this method is to solve the question of a small-scale water conservancy project’s influence on flood forecasting precision, which can be used in the basin with multitudinous small reservoirs in the upstream region and can help estimate non-runoff data for small reservoir runoff. Taking the 20060826 flood as an example, the flood detention quantity of 19 small reservoirs is modeled. The results show that the absolute error of the total flood detention quantity is 0.2×10 4 m 3 , and the relative error is 0.12%. The flood detention quantity of small reservoirs in the entire basin is then modeled using this method, and the primary flood forecasting model is adjusted. After adjustment, the precision is significantly improved, with the relative error decreasing from 31.8% to 10.1%.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 50809010, 50909012, 51079014)the National Key Technology R&D Program during the 11th Five-Year Plan Period of China (Grant No. 2007BAB28B01)
文摘This paper proposes a method of small reservoir flood detention modeling that utilizes data from the American land resources satellite Landsat TM/ETM+. Precipitation and potential evapotranspiration are taken as the control conditions in this method on the basis of basin terrain classification. The objective of this method is to solve the question of a small-scale water conservancy project’s influence on flood forecasting precision, which can be used in the basin with multitudinous small reservoirs in the upstream region and can help estimate non-runoff data for small reservoir runoff. Taking the 20060826 flood as an example, the flood detention quantity of 19 small reservoirs is modeled. The results show that the absolute error of the total flood detention quantity is 0.2×10 4 m 3 , and the relative error is 0.12%. The flood detention quantity of small reservoirs in the entire basin is then modeled using this method, and the primary flood forecasting model is adjusted. After adjustment, the precision is significantly improved, with the relative error decreasing from 31.8% to 10.1%.