Maize is one of the most important crops worldwide, but it suffers from salt stress when grown in saline-alkaline soil. There is therefore an urgent need to improve maize salt tolerance and crop yield. In this study, ...Maize is one of the most important crops worldwide, but it suffers from salt stress when grown in saline-alkaline soil. There is therefore an urgent need to improve maize salt tolerance and crop yield. In this study, the SsNHX1 gene of Suaeda salsa, which encodes a vacuolar membrane Na~+/H~+ antiporter, was transformed into the maize inbred line 18-599 by Agrobacterium-mediated transformation. Transgenic maize plants overexpressing the SsNHX1 gene showed less growth retardation when treated with an increasing NaCl gradient of up to 1%, indicating enhanced salt tolerance. The improved salt tolerance of transgenic plants was also demonstrated by a significantly elevated seed germination rate(79%) and a reduction in seminal root length inhibition. Moreover, transgenic plants under salt stress exhibited less physiological damage. SsNHX1-overexpressing transgenic maize accumulated more Na~+ and K~+ than wild-type(WT) plants particularly in the leaves, resulting in a higher ratio of K~+/Na~+ in the leaves under salt stress. This result revealed that the improved salt tolerance of SsNHX1-overexpressing transgenic maize plants was likely attributed to SsNHX1-mediated localization of Na~+ to vacuoles and subsequent maintenance of the cytosolic ionic balance. In addition, SsNHX1 overexpression also improved the drought tolerance of the transgenic maize plants, as rehydrated transgenic plants were restored to normal growth while WT plants did not grow normally after dehydration treatment. Therefore, based on our engineering approach, SsNHX1 represents a promising candidate gene for improving the salt and drought tolerance of maize and other crops.展开更多
Maize landraces White Dent and Golden Queen played a very important role in the pre-hybrid era of maize production in China. However, dozens of accessions with the same names of White Dent and Golden Queen are preserv...Maize landraces White Dent and Golden Queen played a very important role in the pre-hybrid era of maize production in China. However, dozens of accessions with the same names of White Dent and Golden Queen are preserved in China National Genebank (CNG). The present study investigated the genetic diversity of these two important groups of maize landraces, as well as the relationships within and among them. Thirty-four landrace accessions with the name of White Dent and 10 with Golden Queen preserved in CNG were fingerprinted with 52 simple sequence repeats with tailed primer M13. Summary statistics including average number of alleles per locus, gene diversity/expected heterozygosity, and observed heterozygosity were carried out using PowerMarker ver. 3.25 software. The test of Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) of all the 44 maize landrace accessions were also performed by PowerMarker. We observed a significant differentiation in terms of the average number of alleles between White Dent and Golden Queen (6.44 alleles per locus in White Dent, 4.48 in Golden Queen), while both groups of maize landraces had a relatively high but similar gene diversity (0.61 of White Dent, 0.63 of Golden Queen). The fixation index (FST) was only 0.0044, while the percentage of loci deviated from Hardy-Weinberg equilibrium within these two groups of White Dent and Golden Queen was 32.69 and 3.92%, respectively. The rather high genetic diversity and average number of alleles per locus confirmed that both groups of landraces had a rather broad germplasm base. The extremely low fixation index showed that there was little genetic variation between White Dent and Golden Queen and the molecular variation within these two groups was remarkably high, indicating no genetic drift between White Dent and Golden Queen and suggesting different improvement approaches to these two important groups of landraces. Hardy-Weinberg equilibrium test revealed that the group of White Dent was deviated from HWE, whereas Golden Queen was under HWE.展开更多
Understanding genetic diversity and population structure of landraces is important in utilization of these germplasm in breeding programs. In the present study, a total of 143 core maize landraces from the South Maize...Understanding genetic diversity and population structure of landraces is important in utilization of these germplasm in breeding programs. In the present study, a total of 143 core maize landraces from the South Maize Region (SR) of China, which can represent the general profile of the genetic diversity in the landraces germplasm of SR, were genotyped by 54 DNA microsatellite markers. Totally, 517 alleles (ranging from 4 to 22) were detected among these landraces, with an average of 9.57 alleles per locus. The total gene diversity of these core landraces was 0.61, suggesting a rather higher level of genetic diversity. Analysis of population structure based on Bayesian method obtained the samilar result as the phylogeny neighbor-joining (N J) method. The results indicated that the whole set of 143 core landraces could be clustered into two distinct groups. All landraces from Guangdong, Hainan, and 15 landraces from Jiangxi were clustered into group 1, while those from the other regions of SR formed the group 2. The results from the analysis of genetic diversity showed that both of groups possessed a similar gene diversity, but group 1 possessed relatively lower mean alleles per locus (6.63) and distinct alleles (91) than group 2 (7.94 and 110, respectively). The relatively high richness of total alleles and distinct alleles preserved in the core landraces from SR suggested that all these germplasm could be useful resources in germplasm enhancement and maize breeding in China.展开更多
Chalcone synthases (CHS, EC 2.3.1.74) are key enzymes that catalyze the first committed step in flavonoid biosynthesis. In this study, we isolated a chalcone synthase, named NtCHS6, from Nicotiana tabacum. This synt...Chalcone synthases (CHS, EC 2.3.1.74) are key enzymes that catalyze the first committed step in flavonoid biosynthesis. In this study, we isolated a chalcone synthase, named NtCHS6, from Nicotiana tabacum. This synthase shared high homology with the NSCHSL (Y14507) gene and contained most of the conserved active sites that are in CHS proteins. The phylogenetic analysis suggested that NtCHS6 protein shared a large genetic distance with other Solanaceae CHS proteins and was the most closely-related to an uncharacterized CHS from Solanum lycopersicum. The expression analysis indicated that NtCHS6 was abundantly expressed in leaves, especially in mature leaves. By scrutinizing its upstream promoter sequences, multiple cis-regulatory elements involved in light and drought responsive were detected. Furthermore, NtCHS6 expression decreased significantly under dark treatment and increased significantly under drought stress suggested that NtCHS6 expression exhibited both light responsiveness and drought responsiveness, and important roles in ultraviolet protection and drought tolerance. Our results might play展开更多
Vitamin A deficiency has become a worldwide problem.Biofortified foods can potentially be an inexpensive,locally adaptable,and long-term solution to dietary-nutrient deficiency.In order to improve the β-carotene cont...Vitamin A deficiency has become a worldwide problem.Biofortified foods can potentially be an inexpensive,locally adaptable,and long-term solution to dietary-nutrient deficiency.In order to improve the β-carotene content in maize grain by breeding and minimize vitamin A deficiency,a complete diallel cross was designed with eight inbred lines of maize,and 64 combinations were obtained in this study.The experimental combinations were planted in Yunnan and Sichuan provinces,respectively,with a random complete block design.The β-carotene contents in the grains of the experimental materials were analyzed by high-performance liquid chromatography.Among the tested materials,the effect difference of general combining ability of the β-carotene content was significant;however,the effect difference of the special combining ability and the reciprocal effect were not significant.The β-carotene content of maize grain was not influenced significantly by the cross and the reciprocal cross.There was a significant correlation about the β-carotene content in the maize grains between the F 1 and their parents.The combinations with high β-carotene content were obviously influenced by the environment,and the mean value of β-carotene content for the experimental materials planted in Ya'an of Sichuan was higher than that planted in Yuanjiang of Yunnan,with the results being significant at the 0.01 level.展开更多
基金supported by the National Natural Science Foundation of China(31561143014,30800687,31071434,and 31522041)the Major Project of Education Department of Sichuan Province,China(15ZA0022)
文摘Maize is one of the most important crops worldwide, but it suffers from salt stress when grown in saline-alkaline soil. There is therefore an urgent need to improve maize salt tolerance and crop yield. In this study, the SsNHX1 gene of Suaeda salsa, which encodes a vacuolar membrane Na~+/H~+ antiporter, was transformed into the maize inbred line 18-599 by Agrobacterium-mediated transformation. Transgenic maize plants overexpressing the SsNHX1 gene showed less growth retardation when treated with an increasing NaCl gradient of up to 1%, indicating enhanced salt tolerance. The improved salt tolerance of transgenic plants was also demonstrated by a significantly elevated seed germination rate(79%) and a reduction in seminal root length inhibition. Moreover, transgenic plants under salt stress exhibited less physiological damage. SsNHX1-overexpressing transgenic maize accumulated more Na~+ and K~+ than wild-type(WT) plants particularly in the leaves, resulting in a higher ratio of K~+/Na~+ in the leaves under salt stress. This result revealed that the improved salt tolerance of SsNHX1-overexpressing transgenic maize plants was likely attributed to SsNHX1-mediated localization of Na~+ to vacuoles and subsequent maintenance of the cytosolic ionic balance. In addition, SsNHX1 overexpression also improved the drought tolerance of the transgenic maize plants, as rehydrated transgenic plants were restored to normal growth while WT plants did not grow normally after dehydration treatment. Therefore, based on our engineering approach, SsNHX1 represents a promising candidate gene for improving the salt and drought tolerance of maize and other crops.
基金supported by the Special Program for Crop Germplasm Resources of the Ministry of Agriculture [(NB07-2130135-(25-30)-05]Natural Science Foundation of Beijing (6071003)+1 种基金Innovation Platform Program for Basic Research of Agricultural Breeding in Beijing (YZPT02-06)Scientific and Technological Key Project in Chongqing for Elite Variety Innovation of Rice and Maize (CSTC 2007AB1045)
文摘Maize landraces White Dent and Golden Queen played a very important role in the pre-hybrid era of maize production in China. However, dozens of accessions with the same names of White Dent and Golden Queen are preserved in China National Genebank (CNG). The present study investigated the genetic diversity of these two important groups of maize landraces, as well as the relationships within and among them. Thirty-four landrace accessions with the name of White Dent and 10 with Golden Queen preserved in CNG were fingerprinted with 52 simple sequence repeats with tailed primer M13. Summary statistics including average number of alleles per locus, gene diversity/expected heterozygosity, and observed heterozygosity were carried out using PowerMarker ver. 3.25 software. The test of Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) of all the 44 maize landrace accessions were also performed by PowerMarker. We observed a significant differentiation in terms of the average number of alleles between White Dent and Golden Queen (6.44 alleles per locus in White Dent, 4.48 in Golden Queen), while both groups of maize landraces had a relatively high but similar gene diversity (0.61 of White Dent, 0.63 of Golden Queen). The fixation index (FST) was only 0.0044, while the percentage of loci deviated from Hardy-Weinberg equilibrium within these two groups of White Dent and Golden Queen was 32.69 and 3.92%, respectively. The rather high genetic diversity and average number of alleles per locus confirmed that both groups of landraces had a rather broad germplasm base. The extremely low fixation index showed that there was little genetic variation between White Dent and Golden Queen and the molecular variation within these two groups was remarkably high, indicating no genetic drift between White Dent and Golden Queen and suggesting different improvement approaches to these two important groups of landraces. Hardy-Weinberg equilibrium test revealed that the group of White Dent was deviated from HWE, whereas Golden Queen was under HWE.
基金supported by the Program for Germplasm Innovation and Utilization from the Minis-try of Agrculture of China (2006BAD13B03)Beijing Natural Science Foundation (6071003)Doctoral Foundation of Southwest University, China(SWUB2008037)
文摘Understanding genetic diversity and population structure of landraces is important in utilization of these germplasm in breeding programs. In the present study, a total of 143 core maize landraces from the South Maize Region (SR) of China, which can represent the general profile of the genetic diversity in the landraces germplasm of SR, were genotyped by 54 DNA microsatellite markers. Totally, 517 alleles (ranging from 4 to 22) were detected among these landraces, with an average of 9.57 alleles per locus. The total gene diversity of these core landraces was 0.61, suggesting a rather higher level of genetic diversity. Analysis of population structure based on Bayesian method obtained the samilar result as the phylogeny neighbor-joining (N J) method. The results indicated that the whole set of 143 core landraces could be clustered into two distinct groups. All landraces from Guangdong, Hainan, and 15 landraces from Jiangxi were clustered into group 1, while those from the other regions of SR formed the group 2. The results from the analysis of genetic diversity showed that both of groups possessed a similar gene diversity, but group 1 possessed relatively lower mean alleles per locus (6.63) and distinct alleles (91) than group 2 (7.94 and 110, respectively). The relatively high richness of total alleles and distinct alleles preserved in the core landraces from SR suggested that all these germplasm could be useful resources in germplasm enhancement and maize breeding in China.
基金supported by the Agricultural Science and Technology Innovation Program, China (ASTIP-TRIC01)
文摘Chalcone synthases (CHS, EC 2.3.1.74) are key enzymes that catalyze the first committed step in flavonoid biosynthesis. In this study, we isolated a chalcone synthase, named NtCHS6, from Nicotiana tabacum. This synthase shared high homology with the NSCHSL (Y14507) gene and contained most of the conserved active sites that are in CHS proteins. The phylogenetic analysis suggested that NtCHS6 protein shared a large genetic distance with other Solanaceae CHS proteins and was the most closely-related to an uncharacterized CHS from Solanum lycopersicum. The expression analysis indicated that NtCHS6 was abundantly expressed in leaves, especially in mature leaves. By scrutinizing its upstream promoter sequences, multiple cis-regulatory elements involved in light and drought responsive were detected. Furthermore, NtCHS6 expression decreased significantly under dark treatment and increased significantly under drought stress suggested that NtCHS6 expression exhibited both light responsiveness and drought responsiveness, and important roles in ultraviolet protection and drought tolerance. Our results might play
基金supported by the Harvest-Plus China Program,the National High-Tech R&D Program of China(2011AA10A103)the Sichuan Maize Breeding Program in the 12th Five-Year Plan,China
文摘Vitamin A deficiency has become a worldwide problem.Biofortified foods can potentially be an inexpensive,locally adaptable,and long-term solution to dietary-nutrient deficiency.In order to improve the β-carotene content in maize grain by breeding and minimize vitamin A deficiency,a complete diallel cross was designed with eight inbred lines of maize,and 64 combinations were obtained in this study.The experimental combinations were planted in Yunnan and Sichuan provinces,respectively,with a random complete block design.The β-carotene contents in the grains of the experimental materials were analyzed by high-performance liquid chromatography.Among the tested materials,the effect difference of general combining ability of the β-carotene content was significant;however,the effect difference of the special combining ability and the reciprocal effect were not significant.The β-carotene content of maize grain was not influenced significantly by the cross and the reciprocal cross.There was a significant correlation about the β-carotene content in the maize grains between the F 1 and their parents.The combinations with high β-carotene content were obviously influenced by the environment,and the mean value of β-carotene content for the experimental materials planted in Ya'an of Sichuan was higher than that planted in Yuanjiang of Yunnan,with the results being significant at the 0.01 level.