The northeastern Qinghai-Tibetan Plateau(QTP) of China is located at the triple junction of the Asian winter and summer monsoons and the westerlies, where paleoclimatic evolution has an important scientific significan...The northeastern Qinghai-Tibetan Plateau(QTP) of China is located at the triple junction of the Asian winter and summer monsoons and the westerlies, where paleoclimatic evolution has an important scientific significance for recognizing the spatial-temporal pattern of Asian monsoons in the past and predicting environmental change in the future. Nevertheless, the framework of the Holocene moisture variation and related mechanisms remain controversial, owing to complex hydroclimatic conditions triggered by the landform of the large mountain-arid basin. Here, we employed geochemical proxies from typical aeolian sand-palaeosol sequences in the Gonghe Basin, northeastern QTP, together with Optically Stimulated Luminescence(OSL) dating, to reconstruct the pattern of effective moisture variation and associated mechanisms in this region. Our results indicate that the regional effective moisture was at its lowest until 9–8 ka, and approached a maximum during 8–4/3 ka of the middle Holocene. Afterwards, the climate became relatively dry in general, but with a transient humid interval around 2–1 ka. Our geochemical evidence indicates that the dry early Holocene probably can be attributed to a strong winter monsoon forced by remnant ice sheet, combined with the high evaporation caused by solar insolation. Also, shifts of humid-dry are closely linked to the Asian summer monsoonal strength and therefore the balance of evaporation-precipitation in the middle and late Holocene. Thus, the pattern of the Holocene effective moisture variation is characterized as the ‘monsoon model’ in a closed intermontane arid and semi-arid basin near the western Asian monsoonal limit.展开更多
Changes in the status of freshwater resources are a topic of major global, regional and local concern. This is especially so in the arid and semi-arid regions of China, where shortage of water resources plays a crucia...Changes in the status of freshwater resources are a topic of major global, regional and local concern. This is especially so in the arid and semi-arid regions of China, where shortage of water resources plays a crucial role in limiting sustainable socioeconomic development, as well as in sustaining natural ecosystems. Recent climate change, as well as the effects of localized human activity, such as the use of water for irrigation agriculture, may have significant effects on the status of the water resources in the region. Here, we report the results of a study of changes in the areas of lakes in Gonghe Basin, northeastern Tibetan Plateau of China, over the last 60 years. The data were acquired from optical satellite images and demonstrate that the total water area of lakes in Gonghe Basin decreased significantly from the 1950s to 1980s. The cause is ascribed mainly to human activity including exploitation of farmland, against a background of increasing population; in addition, climatic data for the region demonstrate a minor drying trend during this period as the temperature increased slightly. After the construction of several reservoirs, significant amounts of water were redistributed to promote irrigation agriculture and we conclude that this caused a significant shrinkage of the natural lakes. However, both the area of farmland and the population size remained approximately constant after 1990. We conclude that the variation of the total area of lakes during the second period was mainly controlled by climatic factors (precipitation and temperature). As the regional temperature reached a new high, the area of some of the lakes decreased sharply before finally maintaining a relatively steady state. We emphasize that anthropogenic climate change and human activity have both significantly influenced the status of water resources in the arid and semi-arid regions of China.展开更多
Trans-Eurasian exchange along the Ancient Silk Road The Ancient Silk Road was the major passageway for linking China,Central and West Asia,and Europe between the second century BCE(Before Common Era)and the sixteenth ...Trans-Eurasian exchange along the Ancient Silk Road The Ancient Silk Road was the major passageway for linking China,Central and West Asia,and Europe between the second century BCE(Before Common Era)and the sixteenth CE,which is identified as the center of civilizations in the Old World during that period(Frankopan,2015).展开更多
伊朗由于其独特的地理位置和脆弱的生态环境一直以来都是气候变化研究的热点区域,降水作为伊朗水资源的重要来源对生态环境和社会经济发展尤为重要,因此评估降水数据集的适用性是进行科学研究的基础。本文利用伊朗1988—2017年103个观...伊朗由于其独特的地理位置和脆弱的生态环境一直以来都是气候变化研究的热点区域,降水作为伊朗水资源的重要来源对生态环境和社会经济发展尤为重要,因此评估降水数据集的适用性是进行科学研究的基础。本文利用伊朗1988—2017年103个观测站的年降水数据(OBS),以平均偏差(Mean Error,ME)、均方根误差(Root Mean Square Error,RMSE)、相关系数(correlation coefficient,R)对Global Precipitation Climatology Centre(GPCC)V2020、Climatic Research Unit(CRU)TS 4.05、Terrestrial Air Temperature and Precipitation:Monthly and Annual Time Series(UDEL)V5.01和NOAA’s Precipitation Reconstruction over Land(PREC)四套全球网格降水数据集在伊朗的适用性进行评估,并进一步分析了地形对不同数据集精度的影响。研究结果显示:(1)GPCC降水数据偏差最小,与观测数据相关性最高,最适合伊朗现代气候变化研究。(2)GPCC、CRU、和UDEL均能反映伊朗降水的基本特征,但普遍会低估降水高值,PREC数据不能准确反映伊朗降水的空间分布模态,因此使用PREC数据分析伊朗降水特征时应当谨慎。(3)海拔和坡度对ME、RMSE以及R有一定影响,坡向对数据集精度影响不大。以上结论可为四套数据的订正及其在伊朗地区气候变化研究中的应用提供科学依据。展开更多
We established a Juniperus przewalski tree ring width chronology, based on tree ring cores collected from the A’nyêmaqên Mountains. Statistical analysis showed that the chronology was highly correlated with...We established a Juniperus przewalski tree ring width chronology, based on tree ring cores collected from the A’nyêmaqên Mountains. Statistical analysis showed that the chronology was highly correlated with instrumental streamflow records from previous August to current July from the Tangnaihai Station in the upper reaches of the Yellow River, with a correlation coefficient of 0.656. Streamflow for the upper reaches of the Yellow River was reconstructed for the past 1234 years. Low flow periods for the 11-year averaged streamflow reconstruction were definite as lower than mean plus 1 standard deviation, and high flow periods were higher than mean minus 1 standard deviation. Over the past 1234 years, high flows occurred 18 times, and low flows occurred 12 times. The main low flow periods were identified as AD 1140–1156, AD 1295–1309, AD 1473–1500, and AD 1820–1847, and the main high flow periods were identified as AD 846–873, and AD 1375–1400. Extremely low streamflow over the reconstruction period was seen during the late 15th century, coinciding with a widespread drought phenomenon, which took place in the northeastern Tibetan Plateau over the same period. Reconstructed streamflow shows significant low-frequency variability, which is in line with drought variability of neighboring regions, as inferred from tree rings and other proxies. Multi-taper spectral analysis suggests the existence of significant periods of 2–5, 22, 35–38, 55–62, and 114–227 years, particularly significant for cyclic variations of years 159 and 36.展开更多
Considerable research is now focusing on abrupt Holocene changes at millennial- and centennial-scales all over the world. This study shows that the changes in theHolocene summer monsoon can be divided into two main pe...Considerable research is now focusing on abrupt Holocene changes at millennial- and centennial-scales all over the world. This study shows that the changes in theHolocene summer monsoon can be divided into two main periods, based on climatic proxy records of lake sediments from the Sanjiaocheng section located at the NW boundary of the summer monsoon, Gansu Province. The early and middle Holocene was humid with stronger summer monsoon, while the late Holocene is dry with weak summer monsoon. Detailed results also show a series of millennial- and centennial-scale changes in the intensity of the summer monsoon, with a periodicity of 1600 years during the whole Holocene, and with a periodicity of 800 years during the early Holocene. Ten dry events during the Holocene are associated with the weakening of the summer monsoon. These rapid climatic changes may be representative of a global climatic change pattern during the Holocene.展开更多
Variations in monsoon strength, moisture or precipitation in eastern China during the MWP reflected by different climatic records have shown apparent discrepancies. Here, detailed environmental magnetic investigations...Variations in monsoon strength, moisture or precipitation in eastern China during the MWP reflected by different climatic records have shown apparent discrepancies. Here, detailed environmental magnetic investigations and mineralogical analyses were conducted on lacustrine sediments of Core GH09B1 (2.8 m long) from Gonghai Lake, Shanxi, North China, concerning the monsoon history during the MWP. The results demonstrate that the main magnetic mineral is magnetite. The sediments with relatively high magnetic mineral concentrations were characterized by relatively fine magnetic grain sizes, which were formed in a period of relatively strong pedogenesis and high precipitation. In contrast, the sediments with low magnetic mineral concentrations reflected an opposite process. The variations of magnetic parameters in Gonghai Lake sediments were mainly controlled by the degree of pedogenesis in the lake drainage basin, which further indicated the strength of the Asian summer monsoon. The variations in the and S 300 parameters of the core clearly reveal the Asian summer monsoon history over the last 1200 years in the study area, suggesting generally abundant precipitation and a strong summer monsoon during the Medieval Warm Period (MWP, AD 910–1220), which is supported by pollen evidence. Furthermore, this 3–6-year resolution environmental magnetic record indicates a dry event around AD 980–1050, interrupting the generally humid MWP. The summer monsoon evolution over the last millennium recorded by magnetic parameters in sediments from Gonghai Lake correlates well with historical documentation (North China) and speleothem oxygen isotopes (Wanxiang Cave), as well as precipitation modeling results (extratropical East Asia), which all indicate a generally humid MWP within which centennial-scale moisture variability existed. It is thus demonstrated that environmental magnetic parameters could be used as an effective proxy for monsoon climate variations in high-resolution lacustrine sediments.展开更多
The history of cultural exchange in prehistoric Eurasia(CEPE) has been widely investigated. Based on archaeological evidence, this process is thought to date back to at least the early Bronze Age, although details abo...The history of cultural exchange in prehistoric Eurasia(CEPE) has been widely investigated. Based on archaeological evidence, this process is thought to date back to at least the early Bronze Age, although details about timings and routes remain unclear. It is likely that CEPE promoted the spread and exchange of crops that originated in different parts of Eurasia; since these remains can be definitely identified and directly dated, they provide ideal research materials to explore the history of CEPE. In this paper, we review the available archaeobotanical evidence and direct radiocarbon dates for crop remains, alongside carbon isotopic data from human bones unearthed from prehistoric sites in Eurasia, in order to investigate the history of the spread of millet crops, and wheat and barley, that were first domesticated in the eastern and western parts of Eurasia during prehistoric times.In combination with other archaeological evidences, we discuss the history of CEPE. Our results suggest that wheat and barley were domesticated in western Asia around 10500 a BP, spread into Europe and western Central Asia before 8000 a BP, and reaching eastern Central Asia and northwestern China between 4500 and 4000 a BP. Data show that both broomcorn and foxtail millet were domesticated in eastern Asia before 7700 a BP, spread into eastern Central Asia between 4500 and 4000 a BP, and into western Asia and Europe prior to 3500 a BP. Wheat, barley, and millet crops were first utilized together in eastern Kazakhstan within Central Asia around 4400 a BP, the region where earliest CEPE is likely to have taken place. These crops were mixedly used mainly in eastern central Asia and northwest China between 4500 and 3500 a BP, and then across the Eurasia before 2200 a BP. The results of this study suggest that transcontinental CEPE might have been initiated during the fifth millennium, before intensifying during the Bronze Age to lay the foundations for the creation of the ancient Silk Road during the Han Dynasty(between 202 BC and 220AD).展开更多
This study analyzed the spatial differences of the precipitation variations in the mid-latitude Asia and their possible physical mechanisms during 1960–2009.The annual precipitation showed an opposite variations betw...This study analyzed the spatial differences of the precipitation variations in the mid-latitude Asia and their possible physical mechanisms during 1960–2009.The annual precipitation showed an opposite variations between the westerlies-dominated arid Central Asia(ACA)and monsoon-dominated North China(NC)during the study period.Given the different contributions of seasonal precipitation to annual total precipitation in ACA and NC,the atmospheric circulation anomalies during the major precipitation seasons(winter in ACA/summer in NC)were analyzed.In winter,negative North Atlantic Oscillation may cause negative height anomalies over the north side and positive anomalies over the south side of the ACA.Together,the enhanced pressure gradient and anomalous westerly wind brings more water vapor to ACA,and leaves less precipitation in NC.In summer,the low-pressure anomalies in Northeast China,along with a weaker summer monsoon and negative height anomalies in Eastern Europe together contribute to reduced(excessive)summer precipitation in NC(ACA).The interactions between ENSO and NAO may result in the opposite precipitation variations between ACA and NC.A significant 2–3-year cycle is identified in ACA,which is linked to the variations of westerly circulation in the middle troposphere.展开更多
This study analyzed the temporal precipitation variations in the arid Central Asia (ACA) and their regional differences during 1930-2009 using monthly gridded precipitation from the Climatic Research Unit (CRU). O...This study analyzed the temporal precipitation variations in the arid Central Asia (ACA) and their regional differences during 1930-2009 using monthly gridded precipitation from the Climatic Research Unit (CRU). Our results showed that the annual precipitation in this westerly circulation dominated arid region is generally increasing during the past 80 years, with an apparent increasing trend (0.7 mm/10 a) in winter. The precipitation variations in ACA also differ regionally, which can be divided into five distinct subregions (Ⅰ West Kazakhstan region, Ⅱ East Kazakhstan region, ⅢCentral Asia Plains region, Ⅳ Kyrgyzstan region, and V Iran Plateau region). The annual precipitation falls fairly even on all seasons in the two northern subregions (regions Ⅰ and Ⅱ, approximately north of 45°N), whereas the annual precipitation is falling mainly on winter and spring (accounting for up to 80% of the annual total precipitation) in the three southern subregions. The annual precipitation is increasing on all subregions except the southwestern ACA (subregion Ⅴ) during the past 80 years. A significant increase in precipitation appeared in subregions Ⅰ and Ⅲ. The long-term trends in annual precipitation in all subregions are determined mainly by trends in winter precipitation. Additionally, the precipitation in ACA has significant interannual variations. The 2-3-year cycle is identified in all subregions, while the 5-6-year cycle is also found in the three southern subregions. Besides the inter-annual variations, there were 3-4 episodic precipitation variations in all subregions, with the latest episodic change that started in the mid- to late 1970s. The precipitations in most of the study regions are fast increasing since the late 1970s. Overall, the responses of ACA precipitation to global warming are complicated. The variations of westerly circulation are likely the major factors that influence the precipitation variations in the study region.展开更多
A high-resolution fossil pollen record from the sedimentary cores of Balikun Lake, northwestern China, combined with modern surface pollen data, is used to reconstruct the history of vegetation and climatic change sin...A high-resolution fossil pollen record from the sedimentary cores of Balikun Lake, northwestern China, combined with modern surface pollen data, is used to reconstruct the history of vegetation and climatic change since 16.7 cal. ka BP. Fossil pollen assem-blages and lithology indicate that the study area was dominated by desert. The desert had extremely arid climate and lower effec-tive moisture during 16.7–7.9 cal. ka BP, especially from 16.7 to 8.9 cal. ka BP when the lake maybe dried up. During 8.9–7.9 cal. ka BP, the environment gradually recovered in this area. It was then followed by the optimum period from 7.9 to 4.3 cal. Ka BP, when the effective moisture obviously increased. It was characterized by the typical desert-steppe/steppe vegetation and was ac-companied with several patch-birch woodlands around the lake. After that, a short but extremely arid climatic event occurred during 4.3–3.8 cal. ka BP, and the vegetation quickly changed from desert-steppe/steppe to desert. It was a relatively optimum period from 3.8 to 0.53 cal. ka BP showing typical desert-steppe/meadow-steppe landscape. Since 0.53 cal. ka BP, the climate has shown signs of deteriorating again. Furthermore, regional comparison shows that the characteristics of climatic and environmental evolution in this area were clearly different from East Asia monsoonal area during the last 16.7 cal. ka BP. It was characterized by the arid climate during the late-glacial and early Holocene, and relatively wet during the mid-late Holocene.展开更多
A 1000-year high-resolution(~10 years) chironomid record from varved sediments of Sugan Lake,Qaidam Basin on the northern Tibetan Plateau,is presented.The chironomid assemblages are mainly composed of the relatively ...A 1000-year high-resolution(~10 years) chironomid record from varved sediments of Sugan Lake,Qaidam Basin on the northern Tibetan Plateau,is presented.The chironomid assemblages are mainly composed of the relatively high-saline-water taxa Psectrocladius barbimanus-type and Orthocladius/Cricotopus,and the relatively low-saline-water taxa Procladius and Psectrocladius sordidellus-type.Variations in the chironomid fauna and inferred salinities suggest that over the last millennium,the Sugan Lake catchment has alternated between contrasting climatic conditions,having a dry climate during the period 990―1550 AD,a relatively humid climate during the Little Ice Age(LIA)(1550―1840 AD),and a dry climate again from 1840 AD onwards.At the decadal to centennial scale,a wet event around 1200―1230 AD,interrupting the generally arid period(990―1550 AD),and a dry event around 1590―1700 AD,punctuating the generally humid period(1550―1840 AD),are clearly documented.Trends in the chironomid-based salinity time series indicate a highly unstable climate during the LIA when salinity fluctuations were of greater magnitude and higher frequency.The effective moisture evolution in the Sugan Lake catchment during the last millennium reconstructed by chironomid analysis is in broad agreement with previous palaeo-moisture data derived from other sites in arid Northwest China(ANC).The LIA,characterized by generally humid conditions over the west-erly-dominated ANC was distinctly different from that in monsoonal China,implying an "out-of-phase" relationship between moisture evolution in these two regions during the past 1000 years.展开更多
This paper presents a 457-year reconstruction of precipitation in the southeastern Qinghai-Tibet Plateau using tree-ring records.Tree-ring samples were collected from the Hengduan Mountains in the southeastern part of...This paper presents a 457-year reconstruction of precipitation in the southeastern Qinghai-Tibet Plateau using tree-ring records.Tree-ring samples were collected from the Hengduan Mountains in the southeastern part of the Qinghai-Tibet Plateau,China.A nearly 500-year chronology was developed using tree-ring width records.Correlation analysis shows moisture is the main factor limiting tree growth in this region.Ring-widths were significantly positively correlated with the Palmer Drought Severity Index(PDSI) and precipitation in many months.The highest correlation coefficient was found between the annual growth of trees and precipitation from the previous September to the current June(0.738).Based on this relationship,we reconstructed the precipitation history from 1509 to 2006.The reconstruction explains 54.4%(Radj2=53.5%,N=49,F=56.12) of the actual precipitation variation during the calibration period(1958-2006).During the reliable period of the reconstruction(1549-2006),some low-frequency climate signals are included,indicating this region has been getting wetter in the last 20 years.The reconstruction documents six apparently dry and five pluvial periods and the 17th century dry period lasted longer than any other.When compared with other recent studies,this study and these earlier reconstructions show a similar trend in the variation of drought and pluvial.Further spatial correlation analysis confirms that the reconstructed precipitation adequately represents the rainfall history of the entire Hengduan Mountain area.The Multi-taper method,a type of spectral analysis,reveals that precipitation in this area had significant(P<0.01) spectral peaks at 3-5 a,60 a and 79-85 a.展开更多
Lake Sugan at the northern edge of the Qaidam Basin was selected as the research object. The temporal se-quence of sedimentary cores retrieved from Lake Sugan since 2 kaBP was reconstructed using the 210Pb, AMS 14C an...Lake Sugan at the northern edge of the Qaidam Basin was selected as the research object. The temporal se-quence of sedimentary cores retrieved from Lake Sugan since 2 kaBP was reconstructed using the 210Pb, AMS 14C and conventional 14C dating methods. Carbon and oxygen iso-topes of carbonate in the fine-grained lake sediments were analysed. Combined with the changes of δ 18O values of sur-face water and air temperature observation data in the study area, it might be thought that the δ 18O value of the carbon-ate indicates effective moisture, and the changes in δ 13C val-ues are related to annual freeze-up duration of the lake and indirectly indicate air temperature changes in winter half year. From the above, the sequence of climatic changes in the region since 2 kaBP was established. The climatic changes experienced five stages: Warm-dry climate during 0-190 AD; cold-dry climate during 190-580 AD; warm-dry cli-mate during 580-1200 AD (MWP); cold-wet climate during 1200-1880 AD (LIA); cold-dry climate during 1880-1950 AD; and climate warming since 1950s. The air temperature changes in winter half year reflected by carbon isotope since 2 kaBP are in good agreement with the historical literature records and other geologic records, which shows that the climate changes recorded by the stable isotopes from Lake Sugan since 2 kaBP are of universal significance.展开更多
基金This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Pan-Third Pole Environment Study for a Green Silk Road (Grant No. XDA 2009000001)the National Natural Science Foundation of China (Grants No. 41977393 and 41671204)
文摘The northeastern Qinghai-Tibetan Plateau(QTP) of China is located at the triple junction of the Asian winter and summer monsoons and the westerlies, where paleoclimatic evolution has an important scientific significance for recognizing the spatial-temporal pattern of Asian monsoons in the past and predicting environmental change in the future. Nevertheless, the framework of the Holocene moisture variation and related mechanisms remain controversial, owing to complex hydroclimatic conditions triggered by the landform of the large mountain-arid basin. Here, we employed geochemical proxies from typical aeolian sand-palaeosol sequences in the Gonghe Basin, northeastern QTP, together with Optically Stimulated Luminescence(OSL) dating, to reconstruct the pattern of effective moisture variation and associated mechanisms in this region. Our results indicate that the regional effective moisture was at its lowest until 9–8 ka, and approached a maximum during 8–4/3 ka of the middle Holocene. Afterwards, the climate became relatively dry in general, but with a transient humid interval around 2–1 ka. Our geochemical evidence indicates that the dry early Holocene probably can be attributed to a strong winter monsoon forced by remnant ice sheet, combined with the high evaporation caused by solar insolation. Also, shifts of humid-dry are closely linked to the Asian summer monsoonal strength and therefore the balance of evaporation-precipitation in the middle and late Holocene. Thus, the pattern of the Holocene effective moisture variation is characterized as the ‘monsoon model’ in a closed intermontane arid and semi-arid basin near the western Asian monsoonal limit.
基金supported by the National Natural Science Foundation of China (41372180)the Open Foundation of MOE Key Laboratory of Western China’s Environmental System,Lanzhou University and the Fundamental Research Funds for the Central Universities (lzujbky-2015-bt01)
文摘Changes in the status of freshwater resources are a topic of major global, regional and local concern. This is especially so in the arid and semi-arid regions of China, where shortage of water resources plays a crucial role in limiting sustainable socioeconomic development, as well as in sustaining natural ecosystems. Recent climate change, as well as the effects of localized human activity, such as the use of water for irrigation agriculture, may have significant effects on the status of the water resources in the region. Here, we report the results of a study of changes in the areas of lakes in Gonghe Basin, northeastern Tibetan Plateau of China, over the last 60 years. The data were acquired from optical satellite images and demonstrate that the total water area of lakes in Gonghe Basin decreased significantly from the 1950s to 1980s. The cause is ascribed mainly to human activity including exploitation of farmland, against a background of increasing population; in addition, climatic data for the region demonstrate a minor drying trend during this period as the temperature increased slightly. After the construction of several reservoirs, significant amounts of water were redistributed to promote irrigation agriculture and we conclude that this caused a significant shrinkage of the natural lakes. However, both the area of farmland and the population size remained approximately constant after 1990. We conclude that the variation of the total area of lakes during the second period was mainly controlled by climatic factors (precipitation and temperature). As the regional temperature reached a new high, the area of some of the lakes decreased sharply before finally maintaining a relatively steady state. We emphasize that anthropogenic climate change and human activity have both significantly influenced the status of water resources in the arid and semi-arid regions of China.
文摘Trans-Eurasian exchange along the Ancient Silk Road The Ancient Silk Road was the major passageway for linking China,Central and West Asia,and Europe between the second century BCE(Before Common Era)and the sixteenth CE,which is identified as the center of civilizations in the Old World during that period(Frankopan,2015).
文摘伊朗由于其独特的地理位置和脆弱的生态环境一直以来都是气候变化研究的热点区域,降水作为伊朗水资源的重要来源对生态环境和社会经济发展尤为重要,因此评估降水数据集的适用性是进行科学研究的基础。本文利用伊朗1988—2017年103个观测站的年降水数据(OBS),以平均偏差(Mean Error,ME)、均方根误差(Root Mean Square Error,RMSE)、相关系数(correlation coefficient,R)对Global Precipitation Climatology Centre(GPCC)V2020、Climatic Research Unit(CRU)TS 4.05、Terrestrial Air Temperature and Precipitation:Monthly and Annual Time Series(UDEL)V5.01和NOAA’s Precipitation Reconstruction over Land(PREC)四套全球网格降水数据集在伊朗的适用性进行评估,并进一步分析了地形对不同数据集精度的影响。研究结果显示:(1)GPCC降水数据偏差最小,与观测数据相关性最高,最适合伊朗现代气候变化研究。(2)GPCC、CRU、和UDEL均能反映伊朗降水的基本特征,但普遍会低估降水高值,PREC数据不能准确反映伊朗降水的空间分布模态,因此使用PREC数据分析伊朗降水特征时应当谨慎。(3)海拔和坡度对ME、RMSE以及R有一定影响,坡向对数据集精度影响不大。以上结论可为四套数据的订正及其在伊朗地区气候变化研究中的应用提供科学依据。
基金supported by the National Natural Science Foundation of China (40671191)the National Natural Science Foundation of China Innovation Team Project (40721061)+2 种基金the Major Program of the National Natural Science Foundation of China (40890051)the One Hundred Tal-ents Program of Chinese Academy of Sciences (29O827B11)the Pro-gram of Introducing Talents of Discipline to Universities from the Chinese Ministry of Education (B06026)
文摘We established a Juniperus przewalski tree ring width chronology, based on tree ring cores collected from the A’nyêmaqên Mountains. Statistical analysis showed that the chronology was highly correlated with instrumental streamflow records from previous August to current July from the Tangnaihai Station in the upper reaches of the Yellow River, with a correlation coefficient of 0.656. Streamflow for the upper reaches of the Yellow River was reconstructed for the past 1234 years. Low flow periods for the 11-year averaged streamflow reconstruction were definite as lower than mean plus 1 standard deviation, and high flow periods were higher than mean minus 1 standard deviation. Over the past 1234 years, high flows occurred 18 times, and low flows occurred 12 times. The main low flow periods were identified as AD 1140–1156, AD 1295–1309, AD 1473–1500, and AD 1820–1847, and the main high flow periods were identified as AD 846–873, and AD 1375–1400. Extremely low streamflow over the reconstruction period was seen during the late 15th century, coinciding with a widespread drought phenomenon, which took place in the northeastern Tibetan Plateau over the same period. Reconstructed streamflow shows significant low-frequency variability, which is in line with drought variability of neighboring regions, as inferred from tree rings and other proxies. Multi-taper spectral analysis suggests the existence of significant periods of 2–5, 22, 35–38, 55–62, and 114–227 years, particularly significant for cyclic variations of years 159 and 36.
基金This study was supported by the National Natural Science Foundation of China (Grant No. 49731010)the National Key Basic Research Project on Western Chinese Arid Areas (Grant No. G1999043501).
文摘Considerable research is now focusing on abrupt Holocene changes at millennial- and centennial-scales all over the world. This study shows that the changes in theHolocene summer monsoon can be divided into two main periods, based on climatic proxy records of lake sediments from the Sanjiaocheng section located at the NW boundary of the summer monsoon, Gansu Province. The early and middle Holocene was humid with stronger summer monsoon, while the late Holocene is dry with weak summer monsoon. Detailed results also show a series of millennial- and centennial-scale changes in the intensity of the summer monsoon, with a periodicity of 1600 years during the whole Holocene, and with a periodicity of 800 years during the early Holocene. Ten dry events during the Holocene are associated with the weakening of the summer monsoon. These rapid climatic changes may be representative of a global climatic change pattern during the Holocene.
基金supported by the National Basic Research Program of China (2010CB950202)the National Natural Science Foundation of China (40971056 and 41001114)
文摘Variations in monsoon strength, moisture or precipitation in eastern China during the MWP reflected by different climatic records have shown apparent discrepancies. Here, detailed environmental magnetic investigations and mineralogical analyses were conducted on lacustrine sediments of Core GH09B1 (2.8 m long) from Gonghai Lake, Shanxi, North China, concerning the monsoon history during the MWP. The results demonstrate that the main magnetic mineral is magnetite. The sediments with relatively high magnetic mineral concentrations were characterized by relatively fine magnetic grain sizes, which were formed in a period of relatively strong pedogenesis and high precipitation. In contrast, the sediments with low magnetic mineral concentrations reflected an opposite process. The variations of magnetic parameters in Gonghai Lake sediments were mainly controlled by the degree of pedogenesis in the lake drainage basin, which further indicated the strength of the Asian summer monsoon. The variations in the and S 300 parameters of the core clearly reveal the Asian summer monsoon history over the last 1200 years in the study area, suggesting generally abundant precipitation and a strong summer monsoon during the Medieval Warm Period (MWP, AD 910–1220), which is supported by pollen evidence. Furthermore, this 3–6-year resolution environmental magnetic record indicates a dry event around AD 980–1050, interrupting the generally humid MWP. The summer monsoon evolution over the last millennium recorded by magnetic parameters in sediments from Gonghai Lake correlates well with historical documentation (North China) and speleothem oxygen isotopes (Wanxiang Cave), as well as precipitation modeling results (extratropical East Asia), which all indicate a generally humid MWP within which centennial-scale moisture variability existed. It is thus demonstrated that environmental magnetic parameters could be used as an effective proxy for monsoon climate variations in high-resolution lacustrine sediments.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41620104007 & 41671077)the National Social Science Foundation of China (Grant No. 12&ZD151)the Fundamental Research Funds for the Central Universities (Grant No. LZUJBKY-2015-k09)
文摘The history of cultural exchange in prehistoric Eurasia(CEPE) has been widely investigated. Based on archaeological evidence, this process is thought to date back to at least the early Bronze Age, although details about timings and routes remain unclear. It is likely that CEPE promoted the spread and exchange of crops that originated in different parts of Eurasia; since these remains can be definitely identified and directly dated, they provide ideal research materials to explore the history of CEPE. In this paper, we review the available archaeobotanical evidence and direct radiocarbon dates for crop remains, alongside carbon isotopic data from human bones unearthed from prehistoric sites in Eurasia, in order to investigate the history of the spread of millet crops, and wheat and barley, that were first domesticated in the eastern and western parts of Eurasia during prehistoric times.In combination with other archaeological evidences, we discuss the history of CEPE. Our results suggest that wheat and barley were domesticated in western Asia around 10500 a BP, spread into Europe and western Central Asia before 8000 a BP, and reaching eastern Central Asia and northwestern China between 4500 and 4000 a BP. Data show that both broomcorn and foxtail millet were domesticated in eastern Asia before 7700 a BP, spread into eastern Central Asia between 4500 and 4000 a BP, and into western Asia and Europe prior to 3500 a BP. Wheat, barley, and millet crops were first utilized together in eastern Kazakhstan within Central Asia around 4400 a BP, the region where earliest CEPE is likely to have taken place. These crops were mixedly used mainly in eastern central Asia and northwest China between 4500 and 3500 a BP, and then across the Eurasia before 2200 a BP. The results of this study suggest that transcontinental CEPE might have been initiated during the fifth millennium, before intensifying during the Bronze Age to lay the foundations for the creation of the ancient Silk Road during the Han Dynasty(between 202 BC and 220AD).
基金supported by the National Basic Research Program of China (2012CB955303)the Program for New Century Excellent Talents in University (NCET-09-0439)+2 种基金the National Natural Science Foundation of China (41021091 and 41130102)the Program of Introducing Talents of Discipline to Universities (B06026)the Fundamental Research Funds for the Central Universities (lzujbky-2012-k45)
文摘This study analyzed the spatial differences of the precipitation variations in the mid-latitude Asia and their possible physical mechanisms during 1960–2009.The annual precipitation showed an opposite variations between the westerlies-dominated arid Central Asia(ACA)and monsoon-dominated North China(NC)during the study period.Given the different contributions of seasonal precipitation to annual total precipitation in ACA and NC,the atmospheric circulation anomalies during the major precipitation seasons(winter in ACA/summer in NC)were analyzed.In winter,negative North Atlantic Oscillation may cause negative height anomalies over the north side and positive anomalies over the south side of the ACA.Together,the enhanced pressure gradient and anomalous westerly wind brings more water vapor to ACA,and leaves less precipitation in NC.In summer,the low-pressure anomalies in Northeast China,along with a weaker summer monsoon and negative height anomalies in Eastern Europe together contribute to reduced(excessive)summer precipitation in NC(ACA).The interactions between ENSO and NAO may result in the opposite precipitation variations between ACA and NC.A significant 2–3-year cycle is identified in ACA,which is linked to the variations of westerly circulation in the middle troposphere.
基金supported by National Basic Research Program of China (Grant No. 2010CB950202)National Natural Science Foundation of China (Grant Nos. 40971056 and 41021091)Fundamental Research Funds for the Central Universities (Grant No. LZUJBKY-2009-82)
文摘This study analyzed the temporal precipitation variations in the arid Central Asia (ACA) and their regional differences during 1930-2009 using monthly gridded precipitation from the Climatic Research Unit (CRU). Our results showed that the annual precipitation in this westerly circulation dominated arid region is generally increasing during the past 80 years, with an apparent increasing trend (0.7 mm/10 a) in winter. The precipitation variations in ACA also differ regionally, which can be divided into five distinct subregions (Ⅰ West Kazakhstan region, Ⅱ East Kazakhstan region, ⅢCentral Asia Plains region, Ⅳ Kyrgyzstan region, and V Iran Plateau region). The annual precipitation falls fairly even on all seasons in the two northern subregions (regions Ⅰ and Ⅱ, approximately north of 45°N), whereas the annual precipitation is falling mainly on winter and spring (accounting for up to 80% of the annual total precipitation) in the three southern subregions. The annual precipitation is increasing on all subregions except the southwestern ACA (subregion Ⅴ) during the past 80 years. A significant increase in precipitation appeared in subregions Ⅰ and Ⅲ. The long-term trends in annual precipitation in all subregions are determined mainly by trends in winter precipitation. Additionally, the precipitation in ACA has significant interannual variations. The 2-3-year cycle is identified in all subregions, while the 5-6-year cycle is also found in the three southern subregions. Besides the inter-annual variations, there were 3-4 episodic precipitation variations in all subregions, with the latest episodic change that started in the mid- to late 1970s. The precipitations in most of the study regions are fast increasing since the late 1970s. Overall, the responses of ACA precipitation to global warming are complicated. The variations of westerly circulation are likely the major factors that influence the precipitation variations in the study region.
基金sup-ported by the National Natural Science Foundation of China (90502008, 40871006 and 40721061)the Program for New Century Excellent Talents in University
文摘A high-resolution fossil pollen record from the sedimentary cores of Balikun Lake, northwestern China, combined with modern surface pollen data, is used to reconstruct the history of vegetation and climatic change since 16.7 cal. ka BP. Fossil pollen assem-blages and lithology indicate that the study area was dominated by desert. The desert had extremely arid climate and lower effec-tive moisture during 16.7–7.9 cal. ka BP, especially from 16.7 to 8.9 cal. ka BP when the lake maybe dried up. During 8.9–7.9 cal. ka BP, the environment gradually recovered in this area. It was then followed by the optimum period from 7.9 to 4.3 cal. Ka BP, when the effective moisture obviously increased. It was characterized by the typical desert-steppe/steppe vegetation and was ac-companied with several patch-birch woodlands around the lake. After that, a short but extremely arid climatic event occurred during 4.3–3.8 cal. ka BP, and the vegetation quickly changed from desert-steppe/steppe to desert. It was a relatively optimum period from 3.8 to 0.53 cal. ka BP showing typical desert-steppe/meadow-steppe landscape. Since 0.53 cal. ka BP, the climate has shown signs of deteriorating again. Furthermore, regional comparison shows that the characteristics of climatic and environmental evolution in this area were clearly different from East Asia monsoonal area during the last 16.7 cal. ka BP. It was characterized by the arid climate during the late-glacial and early Holocene, and relatively wet during the mid-late Holocene.
基金Supported by the Fund for Creative Research Groups,National Natural Science Foundation of China (Grant No. 40721061)Research Fund for the Doctoral Program of Higher Education (Grant No. 20060730003)
文摘A 1000-year high-resolution(~10 years) chironomid record from varved sediments of Sugan Lake,Qaidam Basin on the northern Tibetan Plateau,is presented.The chironomid assemblages are mainly composed of the relatively high-saline-water taxa Psectrocladius barbimanus-type and Orthocladius/Cricotopus,and the relatively low-saline-water taxa Procladius and Psectrocladius sordidellus-type.Variations in the chironomid fauna and inferred salinities suggest that over the last millennium,the Sugan Lake catchment has alternated between contrasting climatic conditions,having a dry climate during the period 990―1550 AD,a relatively humid climate during the Little Ice Age(LIA)(1550―1840 AD),and a dry climate again from 1840 AD onwards.At the decadal to centennial scale,a wet event around 1200―1230 AD,interrupting the generally arid period(990―1550 AD),and a dry event around 1590―1700 AD,punctuating the generally humid period(1550―1840 AD),are clearly documented.Trends in the chironomid-based salinity time series indicate a highly unstable climate during the LIA when salinity fluctuations were of greater magnitude and higher frequency.The effective moisture evolution in the Sugan Lake catchment during the last millennium reconstructed by chironomid analysis is in broad agreement with previous palaeo-moisture data derived from other sites in arid Northwest China(ANC).The LIA,characterized by generally humid conditions over the west-erly-dominated ANC was distinctly different from that in monsoonal China,implying an "out-of-phase" relationship between moisture evolution in these two regions during the past 1000 years.
基金supported by the National Natural Science Foundation of China (41171039 and 40890051)the Chinese NSFC Innovation Team Project (41021091)+1 种基金the One Hundred Talents Program of Chinese Academy of Sciences (29O827B11)the Program of Introducing Talents of Discipline to Universities from China’s Ministry of Education (B06026)
文摘This paper presents a 457-year reconstruction of precipitation in the southeastern Qinghai-Tibet Plateau using tree-ring records.Tree-ring samples were collected from the Hengduan Mountains in the southeastern part of the Qinghai-Tibet Plateau,China.A nearly 500-year chronology was developed using tree-ring width records.Correlation analysis shows moisture is the main factor limiting tree growth in this region.Ring-widths were significantly positively correlated with the Palmer Drought Severity Index(PDSI) and precipitation in many months.The highest correlation coefficient was found between the annual growth of trees and precipitation from the previous September to the current June(0.738).Based on this relationship,we reconstructed the precipitation history from 1509 to 2006.The reconstruction explains 54.4%(Radj2=53.5%,N=49,F=56.12) of the actual precipitation variation during the calibration period(1958-2006).During the reliable period of the reconstruction(1549-2006),some low-frequency climate signals are included,indicating this region has been getting wetter in the last 20 years.The reconstruction documents six apparently dry and five pluvial periods and the 17th century dry period lasted longer than any other.When compared with other recent studies,this study and these earlier reconstructions show a similar trend in the variation of drought and pluvial.Further spatial correlation analysis confirms that the reconstructed precipitation adequately represents the rainfall history of the entire Hengduan Mountain area.The Multi-taper method,a type of spectral analysis,reveals that precipitation in this area had significant(P<0.01) spectral peaks at 3-5 a,60 a and 79-85 a.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.401 25001,40301051,40301050 and 40421101).
文摘Lake Sugan at the northern edge of the Qaidam Basin was selected as the research object. The temporal se-quence of sedimentary cores retrieved from Lake Sugan since 2 kaBP was reconstructed using the 210Pb, AMS 14C and conventional 14C dating methods. Carbon and oxygen iso-topes of carbonate in the fine-grained lake sediments were analysed. Combined with the changes of δ 18O values of sur-face water and air temperature observation data in the study area, it might be thought that the δ 18O value of the carbon-ate indicates effective moisture, and the changes in δ 13C val-ues are related to annual freeze-up duration of the lake and indirectly indicate air temperature changes in winter half year. From the above, the sequence of climatic changes in the region since 2 kaBP was established. The climatic changes experienced five stages: Warm-dry climate during 0-190 AD; cold-dry climate during 190-580 AD; warm-dry cli-mate during 580-1200 AD (MWP); cold-wet climate during 1200-1880 AD (LIA); cold-dry climate during 1880-1950 AD; and climate warming since 1950s. The air temperature changes in winter half year reflected by carbon isotope since 2 kaBP are in good agreement with the historical literature records and other geologic records, which shows that the climate changes recorded by the stable isotopes from Lake Sugan since 2 kaBP are of universal significance.