为了满足"测试技术"课程的教学需要,设计了多传感器转速测量实验平台。该实验平台以小型转子为被测对象,搭载了电涡流传感器、磁电传感器、光电传感器等多种传感器,以NI ELVIS Ⅱ+为硬件基础,设计了多种信号调理电路板,利用La...为了满足"测试技术"课程的教学需要,设计了多传感器转速测量实验平台。该实验平台以小型转子为被测对象,搭载了电涡流传感器、磁电传感器、光电传感器等多种传感器,以NI ELVIS Ⅱ+为硬件基础,设计了多种信号调理电路板,利用LabVIEW软件开发了转速测试分析软件,可以实现多种传感器同时采集分析信号。基于该实验平台规划了综合实验项目,通过实验可以锻炼学生分析和解决复杂测试问题的能力。展开更多
The state-space method is employed to evaluate the modal parameters of functionally graded, magneto-electro-elastic, and multilayered plates. Based on the assumption that the properties of the functionally graded mate...The state-space method is employed to evaluate the modal parameters of functionally graded, magneto-electro-elastic, and multilayered plates. Based on the assumption that the properties of the functionally graded material are exponential, the state equation of structural vibration which takes the displacement and stress of the structure as state variables is derived. The natural frequencies and modal shapes are calculated based on the general solutions of the state equation and boundary conditions given in this paper. The influence of the functionally graded exponential factor on the elastic displacement, electric, and magnetic fields of the structure are discussed by assuming a sandwich plate model with different stacking sequences.展开更多
文摘为了满足"测试技术"课程的教学需要,设计了多传感器转速测量实验平台。该实验平台以小型转子为被测对象,搭载了电涡流传感器、磁电传感器、光电传感器等多种传感器,以NI ELVIS Ⅱ+为硬件基础,设计了多种信号调理电路板,利用LabVIEW软件开发了转速测试分析软件,可以实现多种传感器同时采集分析信号。基于该实验平台规划了综合实验项目,通过实验可以锻炼学生分析和解决复杂测试问题的能力。
基金Project supported by the National Natural Science Foundation of China (No. 50575172).
文摘The state-space method is employed to evaluate the modal parameters of functionally graded, magneto-electro-elastic, and multilayered plates. Based on the assumption that the properties of the functionally graded material are exponential, the state equation of structural vibration which takes the displacement and stress of the structure as state variables is derived. The natural frequencies and modal shapes are calculated based on the general solutions of the state equation and boundary conditions given in this paper. The influence of the functionally graded exponential factor on the elastic displacement, electric, and magnetic fields of the structure are discussed by assuming a sandwich plate model with different stacking sequences.