To investigate the mechanism of the organic-matter enrichment in the Lower Longmaxi Formation shale,the geochemistry and total organic carbon(TOC)of the Longmaxi Formation black shales in the Jiaoshiba,Zhaotong,and We...To investigate the mechanism of the organic-matter enrichment in the Lower Longmaxi Formation shale,the geochemistry and total organic carbon(TOC)of the Longmaxi Formation black shales in the Jiaoshiba,Zhaotong,and Weiyuan areas of the Sichuan Basin were analyzed.Paleoproductivity proxy parameters(Babio,Siex,and Ni/Al),clastic influx proxies(TiO2 and Ti/Al),redox indices(V/Cr,Ni/Co,V/(V+Ni),and U/Th),and hydrothermal indicators(Fe,Mn,and Y concentrations;Fe/Ti ratio and a Ni-Zn-Co diagram)were employed to decipher the paleoenvironment of the Lower Longmaxi Formation shales.TiO2 and Ti/Al indicated low terrigenous detrital influx in all three areas.However,Babio,Siex,and Ni/Al indicated high productivity in the Jiaoshiba area.V/Cr,Ni/Co,and U/Th indicated higher oxygen content with larger fluctuations in the Zhaotong and Weiyuan areas.Fe,Mn,and Y concentrations and the Fe/Ti ratio implied greater active hydrothermal activity in the Weiyuan area.These heterogeneities were considered to be closely related to the paleoenvironment and paleogeography,and the large basement faults that developed during the Chuanzhong paleo-uplift could have provided vents for deep-hydrothermal-fluid upwelling.The redox indices(V/Cr,Ni/Co,and U/Th)and a paleoproductivity proxy(Ni/Al)displayed a significant correlation with the TOC,suggesting that both excellent preservation conditions and high paleoproductivity were the controlling factors for the enrichment of organic matter in the Longmaxi Formation shale.There was no obvious correlation between the clastic influx proxy(Ti/Al)and the TOC due to the extremely low supply of terrigenous debris.The hydrothermal indicator(Fe/Ti)was negatively correlated with the TOC in the Weiyuan area,indicating that hydrothermal activity may have played a negative role in the accumulation of organic matter.This study suggests that the enrichment of organic matter in the Longmaxi Formation marine shale varied according to the paleogeography and sedimentary environment.展开更多
The Qiangtang basin is located in the central Tibetan Plateau. This basin has an important structural position, and further study of its tectonic and thermal histories has great significance for understanding the evol...The Qiangtang basin is located in the central Tibetan Plateau. This basin has an important structural position, and further study of its tectonic and thermal histories has great significance for understanding the evolution of the Tibetan Plateau and the hydrocarbon potential of marine carbonates in the basin. This study focuses on low temperature thermochronology and in particular conducted apatite fission track analysis. Under constraints provided by the geological background, the thermal history in different tectonic units is characterized by the degree of annealing of samples, and the timing of major (uplift-erosion related) cooling episodes is inferred. The cooling history in the Qiangtang basin can be divided into two distinct episodes. The first stage is mainly from the late Early Cretaceous to the Late Cretaceous (69.8 Ma to 108.7 Ma), while the second is mainly from the Middle- Late Eocene to the late Miocene (10.3 Ma to 44.4 Ma). The first cooling episode records the uplift of strata in the central Qiangtang basin caused by continued convergent extrusion after the Bangong- Nujiang ocean closed. The second episode can be further divided into three periods, which are respectively 10.3 Ma, 22.6-26.1 Ma and 30.8-44.4 Ma. The late Oligocene-early Miocene (22.6-26.1 Ma) is the main cooling period. The distribution and times of the earlier uplift-related cooling show that the effect of extrusion after the collision between Eurasian plate and India plate obviously influenced the Qiangtang basin at 44.4 Ma. The Qiangtang basin underwent compression and started to be uplifted from the middle-late Eocene to the early Oligocene (45.0-30.8 Ma). Subsequently, a large-scale and intensive uplift process occurred during the late Oligocene to early Miocene (26.1-22.6 Ma) and the basin continued to undergo compression and uplift up to the late Miocene (10.3 Ma). Thus, uplift-erosion in the Qiangtang basin was intensive from 44.5 Ma to about 10 Ma. The timing of cooling in the second episode shows that the uplift of the Qiangtang basin was caused by the strong compression after the collision of the Indian plate and Eurasian plate. On the whole, the new apatite fission-track data from the Qiangtang basin show that the Tibetan Plateau started to extrude and uplift during 45-30.8 Ma. The main period of uplift and formation of the Tibetan Plateau took place about 22.6-26.1 Ma, and uplift and extrusion continued until the late Miocene (10.3 Ma).展开更多
基金supported by U.S. National Science Foundation (No. 1661733)the National Science and Technology Major Project of China (No. 2017ZX05005002-008)+3 种基金the National Natural Science Foundation of China (No. 41772121)the National Natural Science Foundation of China (No. 41630312)the Open Fund of the Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology and the State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development (No. GSYKY-B09-33)Department of Geology, Northwest University, China, for the financial support given to the first author
文摘To investigate the mechanism of the organic-matter enrichment in the Lower Longmaxi Formation shale,the geochemistry and total organic carbon(TOC)of the Longmaxi Formation black shales in the Jiaoshiba,Zhaotong,and Weiyuan areas of the Sichuan Basin were analyzed.Paleoproductivity proxy parameters(Babio,Siex,and Ni/Al),clastic influx proxies(TiO2 and Ti/Al),redox indices(V/Cr,Ni/Co,V/(V+Ni),and U/Th),and hydrothermal indicators(Fe,Mn,and Y concentrations;Fe/Ti ratio and a Ni-Zn-Co diagram)were employed to decipher the paleoenvironment of the Lower Longmaxi Formation shales.TiO2 and Ti/Al indicated low terrigenous detrital influx in all three areas.However,Babio,Siex,and Ni/Al indicated high productivity in the Jiaoshiba area.V/Cr,Ni/Co,and U/Th indicated higher oxygen content with larger fluctuations in the Zhaotong and Weiyuan areas.Fe,Mn,and Y concentrations and the Fe/Ti ratio implied greater active hydrothermal activity in the Weiyuan area.These heterogeneities were considered to be closely related to the paleoenvironment and paleogeography,and the large basement faults that developed during the Chuanzhong paleo-uplift could have provided vents for deep-hydrothermal-fluid upwelling.The redox indices(V/Cr,Ni/Co,and U/Th)and a paleoproductivity proxy(Ni/Al)displayed a significant correlation with the TOC,suggesting that both excellent preservation conditions and high paleoproductivity were the controlling factors for the enrichment of organic matter in the Longmaxi Formation shale.There was no obvious correlation between the clastic influx proxy(Ti/Al)and the TOC due to the extremely low supply of terrigenous debris.The hydrothermal indicator(Fe/Ti)was negatively correlated with the TOC in the Weiyuan area,indicating that hydrothermal activity may have played a negative role in the accumulation of organic matter.This study suggests that the enrichment of organic matter in the Longmaxi Formation marine shale varied according to the paleogeography and sedimentary environment.
基金the National Natural Science Foundation of China (No.41372128)the State Key Laboratory of Continental Dynamics project in Northwest University (No.BJ08133-1)
文摘The Qiangtang basin is located in the central Tibetan Plateau. This basin has an important structural position, and further study of its tectonic and thermal histories has great significance for understanding the evolution of the Tibetan Plateau and the hydrocarbon potential of marine carbonates in the basin. This study focuses on low temperature thermochronology and in particular conducted apatite fission track analysis. Under constraints provided by the geological background, the thermal history in different tectonic units is characterized by the degree of annealing of samples, and the timing of major (uplift-erosion related) cooling episodes is inferred. The cooling history in the Qiangtang basin can be divided into two distinct episodes. The first stage is mainly from the late Early Cretaceous to the Late Cretaceous (69.8 Ma to 108.7 Ma), while the second is mainly from the Middle- Late Eocene to the late Miocene (10.3 Ma to 44.4 Ma). The first cooling episode records the uplift of strata in the central Qiangtang basin caused by continued convergent extrusion after the Bangong- Nujiang ocean closed. The second episode can be further divided into three periods, which are respectively 10.3 Ma, 22.6-26.1 Ma and 30.8-44.4 Ma. The late Oligocene-early Miocene (22.6-26.1 Ma) is the main cooling period. The distribution and times of the earlier uplift-related cooling show that the effect of extrusion after the collision between Eurasian plate and India plate obviously influenced the Qiangtang basin at 44.4 Ma. The Qiangtang basin underwent compression and started to be uplifted from the middle-late Eocene to the early Oligocene (45.0-30.8 Ma). Subsequently, a large-scale and intensive uplift process occurred during the late Oligocene to early Miocene (26.1-22.6 Ma) and the basin continued to undergo compression and uplift up to the late Miocene (10.3 Ma). Thus, uplift-erosion in the Qiangtang basin was intensive from 44.5 Ma to about 10 Ma. The timing of cooling in the second episode shows that the uplift of the Qiangtang basin was caused by the strong compression after the collision of the Indian plate and Eurasian plate. On the whole, the new apatite fission-track data from the Qiangtang basin show that the Tibetan Plateau started to extrude and uplift during 45-30.8 Ma. The main period of uplift and formation of the Tibetan Plateau took place about 22.6-26.1 Ma, and uplift and extrusion continued until the late Miocene (10.3 Ma).