期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation
1
作者 caixia tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
下载PDF
Fault Diagnosis of Photovoltaic Array Based on Deep Belief Network Optimized by Genetic Algorithm 被引量:2
2
作者 caixia tao Xu Wang +1 位作者 Fengyang Gao Min Wang 《Chinese Journal of Electrical Engineering》 CSCD 2020年第3期106-114,共9页
When using deep belief networks(DBN)to establish a fault diagnosis model,the objective function easily falls into a local optimum during the learning and training process due to random initialization of the DBN networ... When using deep belief networks(DBN)to establish a fault diagnosis model,the objective function easily falls into a local optimum during the learning and training process due to random initialization of the DBN network bias and weights,thereby affecting the computational efficiency.To address the problem,a fault diagnosis method based on a deep belief network optimized by genetic algorithm(GA-DBN)is proposed.The method uses the restricted Boltzmann machine reconstruction error to structure the fitness function,and uses the genetic algorithm to optimize the network bias and weight,thus improving the network accuracy and convergence speed.In the experiment,the performance of the model is analyzed from the aspects of reconstruction error,classification accuracy,and time-consuming size.The results are compared with those of back propagation optimized by the genetic algorithm,support vector machines,and DBN.It shows that the proposed method improves the generalization ability of traditional DBN,and has higher recognition accuracy of photovoltaic array faults. 展开更多
关键词 Deep belief network(DBN) fault diagnosis genetic algorithm PV array recognition accuracy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部