Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was ...Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was proposed to release the shortage of fresh water and then it was considered much more important to prepare photothermal materials on large scales with high performance and low cost.In this review,we summarized the works on carbon-based photothermal materials in the past years,including the preparation as well as their application in steam generation.From these works,we give an outlook on the difficulties and chances of how to design and prepare carbon-based photothermal materials.展开更多
Developing highly efficient oxygen evolution reaction(OER)catalyst for the acidic corrosive operating conditions is a challenging task.Herein,we report the synthesis of uniform RuO_(2)clusters with~2 nm in size via el...Developing highly efficient oxygen evolution reaction(OER)catalyst for the acidic corrosive operating conditions is a challenging task.Herein,we report the synthesis of uniform RuO_(2)clusters with~2 nm in size via electrochemical leaching of Sr from SrRuO_(3) ceramic in acid.The RuO_(2)clusters exhibit ultrahigh OER activity with overpotential of~160 mV at 10 mA·cm_(geo)^(−2) in 1.0 M HClO4 solution for 30-h testing.The extended X-ray absorption fine structure measurement reveals enlarged Jahn-Teller distortion of Ru-O octahedra in the RuO_(2)clusters compared to its bulk counterpart.Density function theory calculations show that the enhanced Jahn-Teller distortion can improve the intrinsic OER activity of RuO_(2).展开更多
Multicomponent metal sulfides have been recognized as promising anode materials for lithium/sodiumion storage given their enticing theoretical capacities. However, the simplification of synthetic processes and the con...Multicomponent metal sulfides have been recognized as promising anode materials for lithium/sodiumion storage given their enticing theoretical capacities. However, the simplification of synthetic processes and the construction of heterogeneous interfaces of multimetal sulfides remain great challenges. Herein,a hierarchical 1T-MoS2/carbon nanosheet decorated Co1–xS/N-doped carbon(Co1–xS/NC@MoS2/C) hollow nanofiber was designed and constructed via a one-pot hydrothermal method using a cobalt-based coordination polymer nanofiber. This nanofiber can transform in-situ into conductive N-doped carbon hollow fibers embedded with active Co1–xS nanoparticles, enabling the epitaxial growth of MoS2 nanosheets.Consequently, the Co1–xS/NC@MoS2/C composites achieve exceptional lithium/sodium-ion storage performance. Compared to MoS2/C microspheres and Co1–xS/NC hollow nanofibers alone, the Co1–xS/NC@MoS2/C hollow nanofibers deliver higher discharge capacities(1085.9 mAh g^-1 for lithium-ion batteries(LIBs) and 748.5 mAh g^-1 for sodium-ion batteries(SIBs) at 100 mA g^-1), better capacity retention(910 mAh g^-1 for LIBs and 636.5 mAh g^-1 for SIBs after 150 cycles at 100 mA g^-1), and increased cycling stability(407.2 mAh g^-1 after 1000 cycles for SIBs at 1000 m A g^-1). Furthermore, the kinetic analysis shows that the lithium/sodium-ion storage processes of the Co1–xS/NC@MoS2/C electrode are mainly controlled by pseudocapacitance behavior. The excellent electrochemical properties can thus be ascribed to the synergy of the MoS2/C nanosheets with the enlarged interlayer spacing, good conductivity of the carbon layers, and the Co1–xS nanoparticles embedded in the hollow nanofibers with extensive reaction sites.展开更多
Polystyrene(PS) fibers with core-shell structures were fabricated by coaxial electrostatic spinning,[10_TD$IF]in which there are liquid epoxy or curing agent as the core and PS as the shell. Scanning electron microsco...Polystyrene(PS) fibers with core-shell structures were fabricated by coaxial electrostatic spinning,[10_TD$IF]in which there are liquid epoxy or curing agent as the core and PS as the shell. Scanning electron microscopy(SEM), Fourier transform infrared(FTIR) spectra and optical microscope were utilized for charactering the morphology and composition of the fibers. Composite coatings embedded with the healant-loaded coreshell fibers have been prepared and the self-healing of the scratch on the coatings has been revealed.展开更多
With the prosperous development of artificial intelligence,medical diagnosis and electronic skins,wearable electronic devices have drawn much attention in our daily life.Flexible pressure sensors based on carbon mater...With the prosperous development of artificial intelligence,medical diagnosis and electronic skins,wearable electronic devices have drawn much attention in our daily life.Flexible pressure sensors based on carbon materials with ultrahigh sensitivity,especially in a large pressure range regime are highly required in wearable applications.In this work,graphene membrane with a layer-by-layer structure has been successfully fabricated via a facile self-assembly and air-drying(SAAD)method.In the SAAD process,air-drying the self-assembled graphene hydrogels contributes to the uniform and compact layer structure in the obtained membranes.Owing to the excellent mechanical and electrical properties of graphene,the pressure sensor constructed by several layers of membranes exhibits high sensitivity(52.36 kPa……-1)and repeatability(short response and recovery time)in the loading pressure range of 0–50 kPa.Compared with most reported graphene-related pressure sensors,our device shows better sensitivity and wider applied pressure range.What’s more,we demonstrate it shows desired results in wearable applications for pulse monitoring,breathing detection as well as different intense motion recording such as walk,run and squat.It’s hoped that the facilely prepared layer-by-layer graphene membrane-based pressure sensors will have more potential to be used for smart wearable devices in the future.展开更多
Due to the enhanced electrochemical activities,mixed metal oxides offer new and fascinating opportunities for high-performance supercapacitor electrodes.However,sluggish ionic and electronic kinetics within the electr...Due to the enhanced electrochemical activities,mixed metal oxides offer new and fascinating opportunities for high-performance supercapacitor electrodes.However,sluggish ionic and electronic kinetics within the electrode fundamentally limit further improvement of their electrochemical performance.To compensate for the deficiency,a flexible electrode(CNTF/Ni-Co-Mn-Mo NS/CNTN)composed of vertically-aligned areolate quaternary metal oxide nanosheets sandwiched between carbon nanotubes(CNTs)is constructed in this study,which demonstrates a unique hierarchical porous structure that can provide three-dimensional transport channels for both ions and electrons.The vertically aligned areolate quaternary metal oxide nanosheets enable increased exposed surface area and paths for ion transport,diffusion and redox reactions,resulting in an evident enhancement in electrochemical activities.Besides,the CNT networks provide improved conductivity,which can accelerate the electron transport.As a result,the flexible supercapacitor based on the CNTF/Ni-Co-Mn-Mo NS/CNTN electrode demonstrates a specific areal capacitance of 3738 m F cm^-2,corresponding to a high energy density of 1.17 m W h cm^-2,which outperforms most of the flexible devices reported recently.Additionally,excellent flexibility of up to 180°bend and superior performance stability of 87.87%capacitance retention after 10,000 charge-discharge cycles can be obtained.This unique design opens up a new way in the development of flexible energy storage devices with high performance.展开更多
Hydrogen energy is considered as an ideal energy with the advantages of green,sustainability,and high energy density,and water splitting is one of the efficient strategies for green hydrogen without carbon emission.As...Hydrogen energy is considered as an ideal energy with the advantages of green,sustainability,and high energy density,and water splitting is one of the efficient strategies for green hydrogen without carbon emission.As for cathodic hydrogen evolution reaction(HER),besides the Pt-based electrocatalysts with excellent electrocatalytic activities on HER,transition metal nitrides(TMNs)as cheap and facile-prepared electrocatalysts have shown remarkable electrocatalytic activities.Incorporation of N atom in metal interstitial lattice results in the unique structure of TMN with high electronic conductivity,strong chemical stability,and d-band contraction.Although the intrinsic electrocatalytic activities of TMNs are mostly lower than those of Pt,it also attracted much attention to the development of TMN with higher intrinsic activity by electronic structure modulation.Here,we review the recent improvement strategies for the intrinsic electrocatalytic activities of TMN catalysts on HER by electronic structure modulation,such as facet,alloying,doping,vacancy,heterostructure,and hybridization.Some important breakthroughs of TMNs have been made;however,the scale application of TMNs with high activity in commercial water electrolyzer is urgent to explore.The future development of TMNs is proposed to focus on developing facile synthesis methods,elucidating regulation mechanism and catalytic mechanism,and enhancing activity and stability.展开更多
Self-assembly of homo-polymers has rarely been reported. Herein, PAA-NH_4 assemblies varying from nanospheres to large particles and yolk-shell vesicles were obtained by adding different amount of HCI solution into th...Self-assembly of homo-polymers has rarely been reported. Herein, PAA-NH_4 assemblies varying from nanospheres to large particles and yolk-shell vesicles were obtained by adding different amount of HCI solution into the dispersion of PAA-NH_4 in ethanol. The changes of zeta potentials, pH value and microstructure of the PAA-NH_4 assemblies were characterized, and the influences of molecular weight and different alcohols on the assembly morphologies were studied. A possible assembly mechanism based on the solubility and electrostatic interaction was proposed. Our study offered an interesting example of homo-polymer assembly and may extend the practical application due to the simple polymers used.展开更多
Because of the intensified electrochemical activities,mixed metal oxides as a representative for pseudocapacitive materials play a key role for high performance supercapacitor electrodes.Nevertheless,low ion and elect...Because of the intensified electrochemical activities,mixed metal oxides as a representative for pseudocapacitive materials play a key role for high performance supercapacitor electrodes.Nevertheless,low ion and electron transfer rate and poor cycling performance in the electrode practically restrict further promotion of their electrochemical performance.In order to offset the defect,a novel copper(Cu)foamsupported nickel molybdate nanosheet decorated carbon nanotube wrapped copper oxide nanowire array(NiMoO4 NSs-CNTs-CuO NWAs/Cu foam)flexible electrode is constructed.The as-prepared electrode demonstrates a unique core-shell holey nanostructure with a large active surface area,which can provide a large number of active sites for redox reactions.Besides,the CNTs networks supply improved conductivity,which can hasten electron transport.Through this simple and efficient design method,the spatial distribution of each component in the flexible electrode is more orderly,short and fast electron transport path with low intrinsic resistance.As a result,the NiMoO4 NSs-CNTs-CuO NWAs/Cu foam as an adhesiveless supercapacitor electrode material exhibits excellent ene rgy storage perfo rmance with high specific areal capacitance of 23.40 F cm^(-2)at a current density of 2 mA cm^(-2),which outperforms most of the flexible electrodes re ported recently.The assembled asymmetric supercapacitor demonstrates an energy density up to 96.40 mW h cm^(-3)and a power density up to 0.4 W cm^(-3)under a working voltage window of 1.7 V.In addition,outstanding flexibility of up to 100°bend and good cycling stability with the capacitance retention of 82.53%after 10,000 cycles can be obtained.展开更多
Designing and synthesizing cost-effective bifunctional catalysts for overall alkaline water/seawater splitting is still a huge challenge for hydrogen production.Herein,Co/Ni/Fe/Mn based-amorphous high-entropy phosphox...Designing and synthesizing cost-effective bifunctional catalysts for overall alkaline water/seawater splitting is still a huge challenge for hydrogen production.Herein,Co/Ni/Fe/Mn based-amorphous high-entropy phosphoxide self-standing electrode(CNFMPO)is synthesized by the facile and fast electrodeposition method.CNFMPO exhibits excellent bifunctional electrocatalytic performances on alkaline water/seawater electrolysis.The hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)overpotentials of CNFMPO in alkaline water/seawater are as low as 43/73 and 252/282 mV to reach a current density of 10 mA cm^(-2),respectively.Additionally,two-electrode electrolyzers with CNFMPO||CNFMPO successfully achieve the current density of 10 mA cm^(-2) at low voltages of 1.54 and 1.56 V for overall alkaline water/seawater splitting,respectively.CNFMPO exhibits satisfactory long-term stability on overall alkaline water/seawater splitting for the surface reconstruction into active metal hydroxide/(oxy)hydroxide,phosphite,and phosphate.Moreover,no hypochlorite is detected during seawater electrolysis for the beneficial chlorite oxidation inhibition of the reconstructed phosphite and phosphate.The excellent catalytic performances of CNFMPO are due to the unique amorphous structure,multi-component synergistic effect,beneficial electronic structure modulation,and surface reconstruction during the catalytic reaction process.Therefore,CNFMPO has shown potential promotion to the development of the water/seawater splitting industry as a promising substituent for noble-metal electrocatalysts.This work provides new insights into the design of efficient bifunctional catalysts for overall water/seawater splitting.展开更多
基金Guangdong Basic and Applied Basic Research Foundation(2021A1515110152,2022A1515240007,and 2023A1515010562)Special Fund for the Sci-tech Innovation Strategy of Guangdong Province(STKJ202209083,STKJ202209066,2020ST006,210719165864287)+4 种基金Characteristic Innovation Project of Colleges and Universities in Guangdong(2021KTSCX030)Scientific Research Foundation of Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center(QD2221007)2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant(2020LKSFG01A)STU Scientific Research Initiation Grant(NTF20005,NTF22018)Science and technology program of Guangzhou(202102021110).
文摘Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was proposed to release the shortage of fresh water and then it was considered much more important to prepare photothermal materials on large scales with high performance and low cost.In this review,we summarized the works on carbon-based photothermal materials in the past years,including the preparation as well as their application in steam generation.From these works,we give an outlook on the difficulties and chances of how to design and prepare carbon-based photothermal materials.
基金the National Natural Science Foundation of China(Nos.22022508,51602143 and 11874036)Guangdong Natural Science Foundation for Distinguished Young Scholars(No.2016A030306020)the National Key Research and Development Program of China(No.2017YFB0701600)。
文摘Developing highly efficient oxygen evolution reaction(OER)catalyst for the acidic corrosive operating conditions is a challenging task.Herein,we report the synthesis of uniform RuO_(2)clusters with~2 nm in size via electrochemical leaching of Sr from SrRuO_(3) ceramic in acid.The RuO_(2)clusters exhibit ultrahigh OER activity with overpotential of~160 mV at 10 mA·cm_(geo)^(−2) in 1.0 M HClO4 solution for 30-h testing.The extended X-ray absorption fine structure measurement reveals enlarged Jahn-Teller distortion of Ru-O octahedra in the RuO_(2)clusters compared to its bulk counterpart.Density function theory calculations show that the enhanced Jahn-Teller distortion can improve the intrinsic OER activity of RuO_(2).
基金This work was supported by the National Natural Science Foundation of China(51673117,21805193 and 51973118)Postdoctoral Science Foundation of China(2019M650212)+2 种基金Key R&D Program of Guangdong Province(2019B010929002 and 2019B010941001)Science and Technology Innovation Commission of Shenzhen(JCYJ20170817094628397,JCYJ20170818093832350,JCYJ20170818112409808,JCYJ20170818100112531,JCYJ20180507184711069,and JCYJ20180305125319991)The authors also thank the Materials and Devices Testing Center of Tsinghua University Shenzhen Graduate School.
文摘Multicomponent metal sulfides have been recognized as promising anode materials for lithium/sodiumion storage given their enticing theoretical capacities. However, the simplification of synthetic processes and the construction of heterogeneous interfaces of multimetal sulfides remain great challenges. Herein,a hierarchical 1T-MoS2/carbon nanosheet decorated Co1–xS/N-doped carbon(Co1–xS/NC@MoS2/C) hollow nanofiber was designed and constructed via a one-pot hydrothermal method using a cobalt-based coordination polymer nanofiber. This nanofiber can transform in-situ into conductive N-doped carbon hollow fibers embedded with active Co1–xS nanoparticles, enabling the epitaxial growth of MoS2 nanosheets.Consequently, the Co1–xS/NC@MoS2/C composites achieve exceptional lithium/sodium-ion storage performance. Compared to MoS2/C microspheres and Co1–xS/NC hollow nanofibers alone, the Co1–xS/NC@MoS2/C hollow nanofibers deliver higher discharge capacities(1085.9 mAh g^-1 for lithium-ion batteries(LIBs) and 748.5 mAh g^-1 for sodium-ion batteries(SIBs) at 100 mA g^-1), better capacity retention(910 mAh g^-1 for LIBs and 636.5 mAh g^-1 for SIBs after 150 cycles at 100 mA g^-1), and increased cycling stability(407.2 mAh g^-1 after 1000 cycles for SIBs at 1000 m A g^-1). Furthermore, the kinetic analysis shows that the lithium/sodium-ion storage processes of the Co1–xS/NC@MoS2/C electrode are mainly controlled by pseudocapacitance behavior. The excellent electrochemical properties can thus be ascribed to the synergy of the MoS2/C nanosheets with the enlarged interlayer spacing, good conductivity of the carbon layers, and the Co1–xS nanoparticles embedded in the hollow nanofibers with extensive reaction sites.
基金financially supported by the MOS of China (No. 2017YFB0703300)the National Natural Science Foundation ofChina (No. 51673117)the Science and Technology Innovation Commission of Shenzhen (Nos. JSGG20160226201833790, JCYJ20150625102750478)
文摘Polystyrene(PS) fibers with core-shell structures were fabricated by coaxial electrostatic spinning,[10_TD$IF]in which there are liquid epoxy or curing agent as the core and PS as the shell. Scanning electron microscopy(SEM), Fourier transform infrared(FTIR) spectra and optical microscope were utilized for charactering the morphology and composition of the fibers. Composite coatings embedded with the healant-loaded coreshell fibers have been prepared and the self-healing of the scratch on the coatings has been revealed.
基金Financial support from the grant from the City University of Hong Kong(SRG 7004918)South China University of Technology(National Key Research and Development Program of China,No.2016YFB0302000)Shenzhen University(Ten Thousand People’s Scheme,Project No.201,810,090,052)。
文摘With the prosperous development of artificial intelligence,medical diagnosis and electronic skins,wearable electronic devices have drawn much attention in our daily life.Flexible pressure sensors based on carbon materials with ultrahigh sensitivity,especially in a large pressure range regime are highly required in wearable applications.In this work,graphene membrane with a layer-by-layer structure has been successfully fabricated via a facile self-assembly and air-drying(SAAD)method.In the SAAD process,air-drying the self-assembled graphene hydrogels contributes to the uniform and compact layer structure in the obtained membranes.Owing to the excellent mechanical and electrical properties of graphene,the pressure sensor constructed by several layers of membranes exhibits high sensitivity(52.36 kPa……-1)and repeatability(short response and recovery time)in the loading pressure range of 0–50 kPa.Compared with most reported graphene-related pressure sensors,our device shows better sensitivity and wider applied pressure range.What’s more,we demonstrate it shows desired results in wearable applications for pulse monitoring,breathing detection as well as different intense motion recording such as walk,run and squat.It’s hoped that the facilely prepared layer-by-layer graphene membrane-based pressure sensors will have more potential to be used for smart wearable devices in the future.
基金supported by the National Natural Science Foundation of China(51673117 and 21805193)the Science and Technology Innovation Commission of Shenzhen(JSGG20160226201833790,JCYJ20170818093832350,JCYJ20170818112409808 and JSGG20170824112840518)China Postdoctoral Science Foundation(2017M622786,2017M622787 and 2019M653067)。
文摘Due to the enhanced electrochemical activities,mixed metal oxides offer new and fascinating opportunities for high-performance supercapacitor electrodes.However,sluggish ionic and electronic kinetics within the electrode fundamentally limit further improvement of their electrochemical performance.To compensate for the deficiency,a flexible electrode(CNTF/Ni-Co-Mn-Mo NS/CNTN)composed of vertically-aligned areolate quaternary metal oxide nanosheets sandwiched between carbon nanotubes(CNTs)is constructed in this study,which demonstrates a unique hierarchical porous structure that can provide three-dimensional transport channels for both ions and electrons.The vertically aligned areolate quaternary metal oxide nanosheets enable increased exposed surface area and paths for ion transport,diffusion and redox reactions,resulting in an evident enhancement in electrochemical activities.Besides,the CNT networks provide improved conductivity,which can accelerate the electron transport.As a result,the flexible supercapacitor based on the CNTF/Ni-Co-Mn-Mo NS/CNTN electrode demonstrates a specific areal capacitance of 3738 m F cm^-2,corresponding to a high energy density of 1.17 m W h cm^-2,which outperforms most of the flexible devices reported recently.Additionally,excellent flexibility of up to 180°bend and superior performance stability of 87.87%capacitance retention after 10,000 charge-discharge cycles can be obtained.This unique design opens up a new way in the development of flexible energy storage devices with high performance.
基金This work was supported by the National Natural Science Foundation of China(52101251)Natural Science Foun-dation of Hebei Province(B2021208030)+1 种基金College Students Inno-vation Training Program of Hebei Province(S2021113409001)STU Scientific Research Initiation Grant(NTF22018).Author contributions:J.S.,M.J.,and C.Z.led the project.The manuscript was primarily written by H.-M.Z.,and J.-J.W.,Y.M.,F.L.,and J.X.revised it.All authors contributed to the manu-script.Competing interests:The authors declare that they have no competing interests.
文摘Hydrogen energy is considered as an ideal energy with the advantages of green,sustainability,and high energy density,and water splitting is one of the efficient strategies for green hydrogen without carbon emission.As for cathodic hydrogen evolution reaction(HER),besides the Pt-based electrocatalysts with excellent electrocatalytic activities on HER,transition metal nitrides(TMNs)as cheap and facile-prepared electrocatalysts have shown remarkable electrocatalytic activities.Incorporation of N atom in metal interstitial lattice results in the unique structure of TMN with high electronic conductivity,strong chemical stability,and d-band contraction.Although the intrinsic electrocatalytic activities of TMNs are mostly lower than those of Pt,it also attracted much attention to the development of TMN with higher intrinsic activity by electronic structure modulation.Here,we review the recent improvement strategies for the intrinsic electrocatalytic activities of TMN catalysts on HER by electronic structure modulation,such as facet,alloying,doping,vacancy,heterostructure,and hybridization.Some important breakthroughs of TMNs have been made;however,the scale application of TMNs with high activity in commercial water electrolyzer is urgent to explore.The future development of TMNs is proposed to focus on developing facile synthesis methods,elucidating regulation mechanism and catalytic mechanism,and enhancing activity and stability.
基金supported by the National Science Foundation of China (Nos. 51522308, 21421061)Chinese Academy of Sciences(No.QYZDB-SSW-SLH025)
文摘Self-assembly of homo-polymers has rarely been reported. Herein, PAA-NH_4 assemblies varying from nanospheres to large particles and yolk-shell vesicles were obtained by adding different amount of HCI solution into the dispersion of PAA-NH_4 in ethanol. The changes of zeta potentials, pH value and microstructure of the PAA-NH_4 assemblies were characterized, and the influences of molecular weight and different alcohols on the assembly morphologies were studied. A possible assembly mechanism based on the solubility and electrostatic interaction was proposed. Our study offered an interesting example of homo-polymer assembly and may extend the practical application due to the simple polymers used.
基金supported by the National Natural Science Foundation of China(Nos.51673117,51973118,and 21805193)the Science and Technology Innovation Commission of Shenzhen(Nos.JCYJ20170818093832350,JCYJ20170818112409808,JSGG20170824112840518,JCYJ20180507184711069,JCYJ20170818100112531,JCYJ20170817094628397,and JCYJ20180305125319991)+1 种基金the Key-Area Research and Development Program of Guangdong Province(Nos.2019B010929002 and 2019B010941001)the China Postdoctoral Science Foundation(No.2019M650212)。
文摘Because of the intensified electrochemical activities,mixed metal oxides as a representative for pseudocapacitive materials play a key role for high performance supercapacitor electrodes.Nevertheless,low ion and electron transfer rate and poor cycling performance in the electrode practically restrict further promotion of their electrochemical performance.In order to offset the defect,a novel copper(Cu)foamsupported nickel molybdate nanosheet decorated carbon nanotube wrapped copper oxide nanowire array(NiMoO4 NSs-CNTs-CuO NWAs/Cu foam)flexible electrode is constructed.The as-prepared electrode demonstrates a unique core-shell holey nanostructure with a large active surface area,which can provide a large number of active sites for redox reactions.Besides,the CNTs networks supply improved conductivity,which can hasten electron transport.Through this simple and efficient design method,the spatial distribution of each component in the flexible electrode is more orderly,short and fast electron transport path with low intrinsic resistance.As a result,the NiMoO4 NSs-CNTs-CuO NWAs/Cu foam as an adhesiveless supercapacitor electrode material exhibits excellent ene rgy storage perfo rmance with high specific areal capacitance of 23.40 F cm^(-2)at a current density of 2 mA cm^(-2),which outperforms most of the flexible electrodes re ported recently.The assembled asymmetric supercapacitor demonstrates an energy density up to 96.40 mW h cm^(-3)and a power density up to 0.4 W cm^(-3)under a working voltage window of 1.7 V.In addition,outstanding flexibility of up to 100°bend and good cycling stability with the capacitance retention of 82.53%after 10,000 cycles can be obtained.
基金supported by the Natural Science Foundation of Hebei Province(No.B2021208030)the College Students Innovation Training Program(Nos.202206224 and S2021113409001).
文摘Designing and synthesizing cost-effective bifunctional catalysts for overall alkaline water/seawater splitting is still a huge challenge for hydrogen production.Herein,Co/Ni/Fe/Mn based-amorphous high-entropy phosphoxide self-standing electrode(CNFMPO)is synthesized by the facile and fast electrodeposition method.CNFMPO exhibits excellent bifunctional electrocatalytic performances on alkaline water/seawater electrolysis.The hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)overpotentials of CNFMPO in alkaline water/seawater are as low as 43/73 and 252/282 mV to reach a current density of 10 mA cm^(-2),respectively.Additionally,two-electrode electrolyzers with CNFMPO||CNFMPO successfully achieve the current density of 10 mA cm^(-2) at low voltages of 1.54 and 1.56 V for overall alkaline water/seawater splitting,respectively.CNFMPO exhibits satisfactory long-term stability on overall alkaline water/seawater splitting for the surface reconstruction into active metal hydroxide/(oxy)hydroxide,phosphite,and phosphate.Moreover,no hypochlorite is detected during seawater electrolysis for the beneficial chlorite oxidation inhibition of the reconstructed phosphite and phosphate.The excellent catalytic performances of CNFMPO are due to the unique amorphous structure,multi-component synergistic effect,beneficial electronic structure modulation,and surface reconstruction during the catalytic reaction process.Therefore,CNFMPO has shown potential promotion to the development of the water/seawater splitting industry as a promising substituent for noble-metal electrocatalysts.This work provides new insights into the design of efficient bifunctional catalysts for overall water/seawater splitting.