Here,using a bioinspired approach,the soft-template electropolymerization of naphtho[2,3-b]thieno[3,4-e][1,4]dioxine(NaphDOT)was conducted in dichloromethane with different water content,and using different supporting...Here,using a bioinspired approach,the soft-template electropolymerization of naphtho[2,3-b]thieno[3,4-e][1,4]dioxine(NaphDOT)was conducted in dichloromethane with different water content,and using different supporting electrolytes.The role of the electrolytes in the formation of reverse micelles that constitutes the soft template is investigated.The reverse micelles stabilized by the electrolyte and the monomer were observed by TEM and related to the various porous nanostructures of the obtained polymer films.We show that the nature of the electrolyte is not only fundamental for the formation of reverse micelles and thus porous nanostructures,but also plays a huge role in the good deposition of the oligomers upon the soft template.Surfaces with nanostructures such as nanotubes,nanorings or nanomembranes were realized.展开更多
文摘Here,using a bioinspired approach,the soft-template electropolymerization of naphtho[2,3-b]thieno[3,4-e][1,4]dioxine(NaphDOT)was conducted in dichloromethane with different water content,and using different supporting electrolytes.The role of the electrolytes in the formation of reverse micelles that constitutes the soft template is investigated.The reverse micelles stabilized by the electrolyte and the monomer were observed by TEM and related to the various porous nanostructures of the obtained polymer films.We show that the nature of the electrolyte is not only fundamental for the formation of reverse micelles and thus porous nanostructures,but also plays a huge role in the good deposition of the oligomers upon the soft template.Surfaces with nanostructures such as nanotubes,nanorings or nanomembranes were realized.