期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Highly efficient and stable organic solar cells with SnO_(2)electron transport layer enabled by UV-curing acrylate oligomers
1
作者 Mwende Mbilo Du Hyeon Ryu +7 位作者 Seungjin Lee Muhammad Haris Julius Mwakondo Mwabora Robinson Juma Musembi Hang Ken Lee Sang Kyu Lee chang eun song Won Suk Shin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期124-131,共8页
The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates f... The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates for the electron transport layer(ETL)in high-performance inverted OSCs.When a solution-processed SnO_(2)ETL is employed,however,the presence of interfacial defects and suboptimal interfacial contact can lower the power conversion efficiency(PCE)and operational stability of OSCs.Herein,highly efficient and stable inverted OSCs by modification of the SnO_(2)surface with ultraviolet(UV)-curable acrylate oligomers(SAR and OCS)are demonstrated.The highest PCEs of 16.6%and 17.0%are achieved in PM6:Y6-BO OSCs with the SAR and OCS,respectively,outperforming a device with a bare SnO_(2)ETL(PCE 13.8%).The remarkable enhancement of PCEs is attributed to the optimized interfacial contact,leading to mitigated surface defects.More strikingly,improved light-soaking and thermal stability strongly correlated with the interfacial defects are demonstrated for OSCs based on SnO_(2)/UV cross-linked resins compared to OSCs utilizing bare SnO_(2).We believe that UV cross-linking oligomers will play a key role as interfacial modifiers in the future fabrication of large-area and flexible OSCs with high efficiency and stability. 展开更多
关键词 Organic solar cells SnO_(2) Surface defects Ultraviolet resins Stability Cross-linking oligomers Non-halogenated solvent
下载PDF
Modeling and implementation of tandem polymer solar cells using wide-bandgap front cells 被引量:2
2
作者 Seo-Jin Ko Hyosung Choi +9 位作者 Quoc Viet Hoang chang eun song Pierre-Olivier Morin Jungwoo Heo Mario Leclerc Sung Cheol Yoon Han Young Woo Won Suk Shin Bright Walker Jin Young Kim 《Carbon Energy》 CAS 2020年第1期131-142,共12页
Tandem device architectures offer a route to greatly increase the maximum possible power conversion efficiencies(PCEs)of polymer solar cells,however,the complexity of tandem cell device fabrication(such as selecting b... Tandem device architectures offer a route to greatly increase the maximum possible power conversion efficiencies(PCEs)of polymer solar cells,however,the complexity of tandem cell device fabrication(such as selecting bandgaps of the front and back cells,current matching,thickness,and recombination layer optimization)often result in lower PCEs than are observed in single-junction devices.In this study,we analyze the influence of front cell and back cell bandgaps and use transfer matrix modeling to rationally design and optimize effective tandem solar cell structures before actual device fabrication.Our approach allows us to estimate tandem device parameters based on known absorption coefficients and open-circuit voltages of different active layer materials and design devices without wasting valuable time and materials.Using this approach,we have investigated a series of wide bandgap,high voltage photovoltaic polymers as front cells in tandem devices with PTB7-Th as a back cell.In this way,we have been able to demonstrate tandem devices with PCE of up to 12.8%with minimal consumption of valuable photoactive materials in tandem device optimization.This value represents one of the highest PCE values to date for fullerene-based tandem solar cells. 展开更多
关键词 polymer solar cells solar cells tandem solar cells
下载PDF
High-efficiency single and tandem fullerene solar cells with asymmetric monofluorinated diketopyrrolopyrrole-based polymer
3
作者 Shafket Rasool Quoc Viet Hoang +6 位作者 Doan Van Vu chang eun song Hang Ken Lee Sang Kyu Lee Jong-Cheol Lee Sang-Jin Moon Won Suk Shin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期236-245,I0007,共11页
Design and synthesis of low bandgap(LBG) polymer donors is inevitably challenging and their processability from a non-halogenated solvent system remains a hurdle to overcome in the area of highperformance polymer sola... Design and synthesis of low bandgap(LBG) polymer donors is inevitably challenging and their processability from a non-halogenated solvent system remains a hurdle to overcome in the area of highperformance polymer solar cells(PSCs).Due to a high aggregation tendency of LBG polymers,especially diketopyrrolopyrrole(DPP)-based polymers coupled with bithiophenes in the polymer backbones,their widespread adoption in non-ha logena ted solvent-processed PSCs has been limited.Herein,a novel LBG DPP-based polymer,called PDPP4 T-1 F with asymmetric arrangement of fluorine atom,has been successfully synthesized and showed an outstanding power conversion efficiency(PCE) of 10.10% in a singlejunction fullerene-based PSCs.Furthermore,an impressive PCE of 13.21% has been achieved in a tandem device from a fully non-halogenated solvent system,which integrates a wide bandgap PDTBTBz-2 F polymer in the bottom cell and LBG PDPP4 T-1 F polymer in the top cell.The achieved efficiency is the highest value reported in the literature to date in fullerene-based tandem PSCs.We found that a uniformly distributed interpenetrating fibril network with nano-scale phase separation and anisotropy of the polymer backbone orientation for efficient charge transfer/transport and suppressed charge recombination in PDPP4 T-1 F-based PSCs led to outstanding PCEs in single and tandem-junction PSCs. 展开更多
关键词 Low bandgap polymers DIKETOPYRROLOPYRROLE Tandem polymer solar cells Non-halogenated solvent Monofluoro-bithiophene
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部