BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and th...BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and there are no drugs to prevent the progression of gastric precancerous lesions to GC.Therefore,it is necessary to find a novel drug that is inexpensive and preventive to against GC.AIM To explore the effects of H.pylori and Moluodan on the Wnt/β-Catenin signaling pathway and precancerous lesions of GC(PLGC).METHODS Mice were divided into the control,N-methyl-N-nitrosourea(MNU),H.pylori+MNU,and Moluodan groups.We first created an H.pylori infection model in the H.pylori+MNU and Moluodan groups.A PLGC model was created in the remaining three groups except for the control group.Moluodan was fed to mice in the Moloudan group ad libitum.The general condition of mice were observed during the whole experiment period.Gastric tissues of mice were grossly and microscopically examined.Through quantitative real-time PCR(qRT-PCR)and Western blotting analysis,the expression of relevant genes were detected.RESULTS Mice in the H.pylori+MNU group showed the worst performance in general condition,gastric tissue visual and microscopic observation,followed by the MNU group,Moluodan group and the control group.QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes,the results showed that the H.pylori+MNU group had the highest expression,followed by the MNU group,Moluodan group and the control group.CONCLUSION H.pylori can activate the Wnt/β-catenin signaling pathway,thereby facilitating the development and progression of PLGC.Moluodan suppressed the activation of the Wnt/β-catenin signaling pathway,thereby decreasing the progression of PLGC.展开更多
AIM: To investigate the roles of nuclear factor(NF)-κB and angiotensin Ⅱ receptor type 1(AT1R) in the pathogenesis of non-alcoholic fatty liver disease(NAFLD).METHODS: Forty-two healthy adult male SpragueDawley rats...AIM: To investigate the roles of nuclear factor(NF)-κB and angiotensin Ⅱ receptor type 1(AT1R) in the pathogenesis of non-alcoholic fatty liver disease(NAFLD).METHODS: Forty-two healthy adult male SpragueDawley rats were randomly divided into three groups:the control group(normal diet), the model group,and the intervention group(10 wk of a high-fat diet feeding, followed by an intraperitoneal injection of PDTC); 6 rats in each group were sacrificed at 6, 10,and 14 wk. After sacrifice, liver tissue was taken,paraffin sections of liver tissue specimens were prepared, hematoxylin and eosin(HE) staining was performed, and pathological changes in liver tissue(i.e., liver fibrosis) were observed by light microscopy.NF-κB expression in liver tissue was detected by immunohistochemistry, and the expression of AT1 R in the liver tissue was detected by reverse transcriptionpolymerase chain reaction(RT-PCR). The data are expressed as mean ± SD. A two-sample t test was used to compare the control group and the model group at different time points, paired t tests were used to compare the differences between the intervention group and the model group, and analysis of variance was used to compare the model group with the control group. Homogeneity of variance was analyzed with single factor analysis of variance. H variance analysis was used to compare the variance. P < 0.05 wasconsidered statistically significant.RESULTS: The NAFLD model was successful after 6wk and 10 wk. Liver fibrosis was found in four rats in the model group, but in only one rat in the intervention group at 14 wk. Liver steatosis, inflammation, and fibrosis were gradually increased throughout the model. In the intervention group, the body mass,rat liver index, serum lipid, and transaminase levels were not increased compared to the model group.In the model group, the degree of liver steatosis was increased at 6, 10, and 14 wk, and was significantly higher than in the control group(P < 0.01). In the model group, different degrees of liver cell necrosis were visible and small leaves, punctated inflammation,focal necrosis, and obvious ballooning degeneration were observed. Partial necrosis and confluent necrosis were observed. In the model group, liver inflammatory activity scores at 6, 10, and 14 wk were higher than in the control group(P < 0.01). Active inflammation in liver tissue in the intervention group was lower than in the model group(P < 0.05). HE staining showed liver fibrosis only at 14 wk in 4/6 rats in the model group and in 1/6 rats in the intervention group. NF-κB positive cells were stained yellow or ensemble yellow,and NF-κB was localized in the cytoplasm and/or nucleus. The model group showed NF-κB activation at6, 10, and 14 wk in liver cells; at the same time points,there were statistically significant differences in the control group(P < 0.01). Over time, NF-κB expression increased; this was statistically lower(P < 0.05) at14 weeks in the intervention group compared to the model group, but significantly increased(P < 0.05)compared with the control group; RT-PCR showed that AT1 R mRNA expression increased gradually in the model group; at 14 wk, the expression was significantly different compared with expression at 10 weeks as well as at 6 weeks(P < 0.05). In the model group, AT1 R mRNA expression was significantly higher than at the same time point in the control group(P <0.01).CONCLUSION: With increasing severity of NAFLD,NF-κB activity is enhanced, and the inhibition of NF-κB activity may reduce AT1 R mRNA expression in NAFLD.展开更多
Background:Blood glucose control is closely related to type 2 diabetes mellitus(T2DM)prognosis.This multicenter study aimed to investigate blood glucose control among patients with insulin-treated T2DM in North China ...Background:Blood glucose control is closely related to type 2 diabetes mellitus(T2DM)prognosis.This multicenter study aimed to investigate blood glucose control among patients with insulin-treated T2DM in North China and explore the application value of combining an elastic network(EN)with a machine-learning algorithm to predict glycemic control.Methods:Basic information,biochemical indices,and diabetes-related data were collected via questionnaire from 2787 consecutive participants recruited from 27 centers in six cities between January 2016 and December 2017.An EN regression was used to address variable collinearity.Then,three common machine learning algorithms(random forest[RF],support vector machine[SVM],and back propagation artificial neural network[BP-ANN])were used to simulate and predict blood glucose status.Additionally,a stepwise logistic regression was performed to compare the machine learning models.Results:The well-controlled blood glucose rate was 45.82%in North China.The multivariable analysis found that hypertension history,atherosclerotic cardiovascular disease history,exercise,and total cholesterol were protective factors in glycosylated hemoglobin(HbAlc)control,while central adiposity,family history,T2DM duration,complications,insulin dose,blood pressure,and hypertension were risk factors for elevated HbAlc.Before the dimensional reduction in the EN,the areas under the curve of RF,SVM,and BP were 0.73,0.61,and 0.70,respectively,while these figures increased to 0.75,0.72,and 0.72,respectively,after dimensional reduction.Moreover,the EN and machine learning models had higher sensitivity and accuracy than the logistic regression models(the sensitivity and accuracy of logistic were 0.52 and 0.56;RF:0.79,0.70;SVM:0.84,0.73;BP-ANN:0.78,0.73,respectively).Conclusions:More than half of T2DM patients in North China had poor glycemic control and were at a higher risk of developing diabetic complications.The EN and machine learning algorithms are alternative choices,in addition to the traditional logistic model,for building predictive models of blood glucose control in patients with T2DM.展开更多
Poor conductivity,sluggish ion diffusion kinetics and short cycle life hinder the further development of manganese oxide in aqueous zinc-ion batteries(AZIBs).Exploring a cathode with high capacity and long cycle life ...Poor conductivity,sluggish ion diffusion kinetics and short cycle life hinder the further development of manganese oxide in aqueous zinc-ion batteries(AZIBs).Exploring a cathode with high capacity and long cycle life is critical to the commercial development of AZIBs.Herein,a two-dimensional(2D) MnO/C composite derived from metal organic framework(MOF) was prepared.The 2D MnO/C cathode exhibits a remarkably cyclic stability with the capacity retention of 90.6% after 900 cycles at 0.5 A·g^(-1) and maintains a high capacity of 120.2 mAh·g^(-1)after 4500 cycles at 1.0 A·g^(-1).It is demonstrated that MnO is converted into Mn_(3)O_(4) through electrochemical activation strategy and shows a Zn^(2+)and H^(+)co-intercalation mechanism.In general,this work provides a new path for the development of high-performance AZIBs cathode with controllable morphology.展开更多
基金All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of the Southwest Medical University(Protocol No.SWMU20230818).
文摘BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and there are no drugs to prevent the progression of gastric precancerous lesions to GC.Therefore,it is necessary to find a novel drug that is inexpensive and preventive to against GC.AIM To explore the effects of H.pylori and Moluodan on the Wnt/β-Catenin signaling pathway and precancerous lesions of GC(PLGC).METHODS Mice were divided into the control,N-methyl-N-nitrosourea(MNU),H.pylori+MNU,and Moluodan groups.We first created an H.pylori infection model in the H.pylori+MNU and Moluodan groups.A PLGC model was created in the remaining three groups except for the control group.Moluodan was fed to mice in the Moloudan group ad libitum.The general condition of mice were observed during the whole experiment period.Gastric tissues of mice were grossly and microscopically examined.Through quantitative real-time PCR(qRT-PCR)and Western blotting analysis,the expression of relevant genes were detected.RESULTS Mice in the H.pylori+MNU group showed the worst performance in general condition,gastric tissue visual and microscopic observation,followed by the MNU group,Moluodan group and the control group.QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes,the results showed that the H.pylori+MNU group had the highest expression,followed by the MNU group,Moluodan group and the control group.CONCLUSION H.pylori can activate the Wnt/β-catenin signaling pathway,thereby facilitating the development and progression of PLGC.Moluodan suppressed the activation of the Wnt/β-catenin signaling pathway,thereby decreasing the progression of PLGC.
基金Supported by grants from the Science and Technology Department of Sichuan Province,No.2011SZ0094
文摘AIM: To investigate the roles of nuclear factor(NF)-κB and angiotensin Ⅱ receptor type 1(AT1R) in the pathogenesis of non-alcoholic fatty liver disease(NAFLD).METHODS: Forty-two healthy adult male SpragueDawley rats were randomly divided into three groups:the control group(normal diet), the model group,and the intervention group(10 wk of a high-fat diet feeding, followed by an intraperitoneal injection of PDTC); 6 rats in each group were sacrificed at 6, 10,and 14 wk. After sacrifice, liver tissue was taken,paraffin sections of liver tissue specimens were prepared, hematoxylin and eosin(HE) staining was performed, and pathological changes in liver tissue(i.e., liver fibrosis) were observed by light microscopy.NF-κB expression in liver tissue was detected by immunohistochemistry, and the expression of AT1 R in the liver tissue was detected by reverse transcriptionpolymerase chain reaction(RT-PCR). The data are expressed as mean ± SD. A two-sample t test was used to compare the control group and the model group at different time points, paired t tests were used to compare the differences between the intervention group and the model group, and analysis of variance was used to compare the model group with the control group. Homogeneity of variance was analyzed with single factor analysis of variance. H variance analysis was used to compare the variance. P < 0.05 wasconsidered statistically significant.RESULTS: The NAFLD model was successful after 6wk and 10 wk. Liver fibrosis was found in four rats in the model group, but in only one rat in the intervention group at 14 wk. Liver steatosis, inflammation, and fibrosis were gradually increased throughout the model. In the intervention group, the body mass,rat liver index, serum lipid, and transaminase levels were not increased compared to the model group.In the model group, the degree of liver steatosis was increased at 6, 10, and 14 wk, and was significantly higher than in the control group(P < 0.01). In the model group, different degrees of liver cell necrosis were visible and small leaves, punctated inflammation,focal necrosis, and obvious ballooning degeneration were observed. Partial necrosis and confluent necrosis were observed. In the model group, liver inflammatory activity scores at 6, 10, and 14 wk were higher than in the control group(P < 0.01). Active inflammation in liver tissue in the intervention group was lower than in the model group(P < 0.05). HE staining showed liver fibrosis only at 14 wk in 4/6 rats in the model group and in 1/6 rats in the intervention group. NF-κB positive cells were stained yellow or ensemble yellow,and NF-κB was localized in the cytoplasm and/or nucleus. The model group showed NF-κB activation at6, 10, and 14 wk in liver cells; at the same time points,there were statistically significant differences in the control group(P < 0.01). Over time, NF-κB expression increased; this was statistically lower(P < 0.05) at14 weeks in the intervention group compared to the model group, but significantly increased(P < 0.05)compared with the control group; RT-PCR showed that AT1 R mRNA expression increased gradually in the model group; at 14 wk, the expression was significantly different compared with expression at 10 weeks as well as at 6 weeks(P < 0.05). In the model group, AT1 R mRNA expression was significantly higher than at the same time point in the control group(P <0.01).CONCLUSION: With increasing severity of NAFLD,NF-κB activity is enhanced, and the inhibition of NF-κB activity may reduce AT1 R mRNA expression in NAFLD.
基金This study was supported by grants from the Ministry of Education of the Humanities and Social Science Project(No.17YJAZH048)the National Natural Science Foundation of China(No.81803333).
文摘Background:Blood glucose control is closely related to type 2 diabetes mellitus(T2DM)prognosis.This multicenter study aimed to investigate blood glucose control among patients with insulin-treated T2DM in North China and explore the application value of combining an elastic network(EN)with a machine-learning algorithm to predict glycemic control.Methods:Basic information,biochemical indices,and diabetes-related data were collected via questionnaire from 2787 consecutive participants recruited from 27 centers in six cities between January 2016 and December 2017.An EN regression was used to address variable collinearity.Then,three common machine learning algorithms(random forest[RF],support vector machine[SVM],and back propagation artificial neural network[BP-ANN])were used to simulate and predict blood glucose status.Additionally,a stepwise logistic regression was performed to compare the machine learning models.Results:The well-controlled blood glucose rate was 45.82%in North China.The multivariable analysis found that hypertension history,atherosclerotic cardiovascular disease history,exercise,and total cholesterol were protective factors in glycosylated hemoglobin(HbAlc)control,while central adiposity,family history,T2DM duration,complications,insulin dose,blood pressure,and hypertension were risk factors for elevated HbAlc.Before the dimensional reduction in the EN,the areas under the curve of RF,SVM,and BP were 0.73,0.61,and 0.70,respectively,while these figures increased to 0.75,0.72,and 0.72,respectively,after dimensional reduction.Moreover,the EN and machine learning models had higher sensitivity and accuracy than the logistic regression models(the sensitivity and accuracy of logistic were 0.52 and 0.56;RF:0.79,0.70;SVM:0.84,0.73;BP-ANN:0.78,0.73,respectively).Conclusions:More than half of T2DM patients in North China had poor glycemic control and were at a higher risk of developing diabetic complications.The EN and machine learning algorithms are alternative choices,in addition to the traditional logistic model,for building predictive models of blood glucose control in patients with T2DM.
基金financially supported by the National Natural Science Foundation of China (Nos.22078200 and 51874199)Guangdong Basic and Applied Basic Research Foundation (No.2021A1515010162)。
文摘Poor conductivity,sluggish ion diffusion kinetics and short cycle life hinder the further development of manganese oxide in aqueous zinc-ion batteries(AZIBs).Exploring a cathode with high capacity and long cycle life is critical to the commercial development of AZIBs.Herein,a two-dimensional(2D) MnO/C composite derived from metal organic framework(MOF) was prepared.The 2D MnO/C cathode exhibits a remarkably cyclic stability with the capacity retention of 90.6% after 900 cycles at 0.5 A·g^(-1) and maintains a high capacity of 120.2 mAh·g^(-1)after 4500 cycles at 1.0 A·g^(-1).It is demonstrated that MnO is converted into Mn_(3)O_(4) through electrochemical activation strategy and shows a Zn^(2+)and H^(+)co-intercalation mechanism.In general,this work provides a new path for the development of high-performance AZIBs cathode with controllable morphology.