期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Understanding the spectrum of non-motor symptoms in multiple sclerosis:insights from animal models
1
作者 Poornima D.E.Weerasinghe-Mudiyanselage Joong-Sun Kim +1 位作者 Taekyun Shin changjong moon 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期84-91,共8页
Multiple sclerosis is a chronic autoimmune disease of the central nervous system and is generally considered to be a non-traumatic,physically debilitating neurological disorder.In addition to experiencing motor disabi... Multiple sclerosis is a chronic autoimmune disease of the central nervous system and is generally considered to be a non-traumatic,physically debilitating neurological disorder.In addition to experiencing motor disability,patients with multiple sclerosis also experience a variety of nonmotor symptoms,including cognitive deficits,anxiety,depression,sensory impairments,and pain.However,the pathogenesis and treatment of such non-motor symptoms in multiple scle rosis are still under research.Preclinical studies for multiple sclerosis benefit from the use of disease-appropriate animal models,including experimental autoimmune encephalomyelitis.Prior to understanding the pathophysiology and developing treatments for non-motor symptoms,it is critical to chara cterize the animal model in terms of its ability to replicate certain non-motor features of multiple sclerosis.As such,no single animal model can mimic the entire spectrum of symptoms.This review focuses on the non-motor symptoms that have been investigated in animal models of multiple sclerosis as well as possible underlying mechanisms.Further,we highlighted gaps in the literature to explain the nonmotor aspects of multiple sclerosis in expe rimental animal models,which will serve as the basis for future studies. 展开更多
关键词 ANXIETY cognitive deficit DEPRESSION experimental autoimmune encephalomyelitis motor disability neurological disorder PAIN PATHOPHYSIOLOGY preclinical study sensory impairments
下载PDF
Changes in structural plasticity of hippocampal neurons in an animal model of multiple sclerosis
2
作者 Poornima D.E.Weerasinghe-Mudiyanselage Sohi Kang +4 位作者 Joong-Sun Kim Sung-Ho Kim Hongbing Wang Taekyun Shin changjong moon 《Zoological Research》 SCIE CSCD 2024年第2期398-414,共17页
Structural plasticity is critical for the functional diversity of neurons in the brain.Experimental autoimmune encephalomyelitis(EAE)is the most commonly used model for multiple sclerosis(MS),successfully mimicking it... Structural plasticity is critical for the functional diversity of neurons in the brain.Experimental autoimmune encephalomyelitis(EAE)is the most commonly used model for multiple sclerosis(MS),successfully mimicking its key pathological features(inflammation,demyelination,axonal loss,and gliosis)and clinical symptoms(motor and non-motordysfunctions).Recentstudieshave demonstrated the importance of synaptic plasticity in EAE pathogenesis.In the present study,we investigated the features of behavioral alteration and hippocampal structural plasticity in EAE-affected mice in the early phase(11 days post-immunization,DPI)and chronic phase(28DPI).EAE-affected mice exhibited hippocampus-related behavioral dysfunction in the open field test during both early and chronic phases.Dendritic complexity was largely affected in the cornu ammonis 1(CA1)and CA3 apical and dentate gyrus(DG)subregions of the hippocampus during the chronic phase,while this effect was only noted in the CA1 apical subregion in the early phase.Moreover,dendritic spine density was reduced in the hippocampal CA1 and CA3 apical/basal and DG subregions in the early phase of EAE,but only reduced in the DG subregion during the chronic phase.Furthermore,mRNA levels of proinflammatory cytokines(Il1β,Tnfα,and Ifnγ)and glial cell markers(Gfap and Cd68)were significantly increased,whereas the expression of activity-regulated cytoskeletonassociated protein(ARC)was reduced during the chronic phase.Similarly,exposure to the aforementioned cytokines in primary cultures of hippocampal neurons reduced dendritic complexity and ARC expression.Primary cultures of hippocampal neurons also showed significantly reduced extracellular signal-regulated kinase(ERK)phosphorylation upon treatment with proinflammatory cytokines.Collectively,these results suggest that autoimmune neuroinflammation alters structural plasticity in the hippocampus,possibly through the ERK-ARC pathway,indicating that this alteration may be associated with hippocampal dysfunctions in EAE. 展开更多
关键词 Activity-regulated cytoskeleton-associated protein Anxiety-like behavior Experimental autoimmune encephalomyelitis Hippocampal dysfunction NEUROINFLAMMATION
下载PDF
Sodium butyrate prevents radiation-induced cognitive impairment by restoring pCREB/BDNF expression 被引量:7
3
作者 Hae June Lee Yeonghoon Son +6 位作者 Minyoung Lee changjong moon Sung Ho Kim In Sik Shin Miyoung Yang Sangwoo Bae Joong Sun Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第9期1530-1535,共6页
Sodium butyrate is a histone deacetylase inhibitor that affects various types of brain damages.To investigate the effects of sodium butyrate on hippocampal dysfunction that occurs after whole-brain irradiation in anim... Sodium butyrate is a histone deacetylase inhibitor that affects various types of brain damages.To investigate the effects of sodium butyrate on hippocampal dysfunction that occurs after whole-brain irradiation in animal models and the effect of sodium butyrate on radiation exposure-induced cognitive impairments,adult C57BL/6 mice were intraperitoneally treated with 0.6 g/kg sodium butyrate before exposure to 10 Gy cranial irradiation.Cognitive impairment in adult C57BL/6 mice was evaluated via an object recognition test 30 days after irradiation.We also detected the expression levels of neurogenic cell markers(doublecortin)and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor.Radiation-exposed mice had decreased cognitive function and hippocampal doublecortin and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression.Sodium butyrate pretreatment reversed these changes.These findings suggest that sodium butyrate can improve radiation-induced cognitive dysfunction through inhibiting the decrease in hippocampal phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression.The study procedures were approved by the Institutional Animal Care and Use Committee of Korea Institute of Radiological Medical Sciences(approval No.KIRAMS16-0002)on December 30,2016. 展开更多
关键词 sodium BUTYRATE RADIOPROTECTOR ionizing radiation hippocampal damage cAMP response element binding BRAIN-DERIVED NEUROTROPHIC factor histone DEACETYLASE inhibitor neurogenesis
下载PDF
Brain-derived neurotropic factor and GABAergic transmission in neurodegeneration and neuroregeneration 被引量:8
4
作者 Jinwook Kim Sueun Lee +4 位作者 Sohi Kang Sung-Ho Kim Jong-Choon Kim Miyoung Yang changjong moon 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1733-1741,共9页
Neurotoxicity induced by stress,radiation,chemicals,or metabolic diseases,is commonly associated with excitotoxicity,oxidative stress,and neuroinflammation.The pathological process of neurotoxicity induces neuronal de... Neurotoxicity induced by stress,radiation,chemicals,or metabolic diseases,is commonly associated with excitotoxicity,oxidative stress,and neuroinflammation.The pathological process of neurotoxicity induces neuronal death,interrupts synaptic plasticity in the brain,and is similar to that of diverse neurodegenerative diseases.Animal models of neurotoxicity have revealed that clinical symptoms and brain lesions can recover over time via neuroregenerative processes.Specifically,brain-derived neurotropic factor(BDNF) and gamma-aminobutyric acid(GABA)-ergic transmission are related to both neurodegeneration and neuroregeneration.This review summarizes the accumulating evidences that suggest a pathogenic role of BDNF and GABAergic transmission,their underlying mechanisms,and the relationship between BDNF and GABA in neurodegeneration and neuroregeneration.This review will provide a comprehensive overview of the underlying mechanisms of neuroregeneration that may help in developing potential strategies for pharmacotherapeutic approaches to treat neurotoxicity and neurodegenerative disease. 展开更多
关键词 脑源性神经营养因子 神经退行性疾病 神经再生 GABA 传输 因子和 神经毒性 γ-氨基丁酸
下载PDF
Temporal profiles of synaptic plasticity-related signals in adult mouse hippocampus with methotrexate treatment 被引量:1
5
作者 Miyoung Yang Juhwan Kim +3 位作者 Sung-Ho Kim Joong-Sun Kim Taekyun Shin changjong moon 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第21期1651-1658,共8页
Methotrexate, which is used to treat many malignancies and autoimmune diseases, affects brain functions including hippocampal-dependent memory function. However, the precise mechanisms underlying methotrexate-induced ... Methotrexate, which is used to treat many malignancies and autoimmune diseases, affects brain functions including hippocampal-dependent memory function. However, the precise mechanisms underlying methotrexate-induced hippocampal dysfunction are poorly understood. To evaluate temporal changes in synaptic plasticity-related signals, the expression and activity of N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, extracellular signal-regulated kinase 1/2, cAMP responsive element-binding protein, glutamate receptor 1, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor were examined in the hippocampi of adult C57BL/6 mice after methotrexate (40 mg/kg) intraperitoneal injection. Western blot analysis showed biphasic changes in synaptic plasticity-related signals in adult hippocampi following methotrexate treatment. N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, and glutamate receptor 1 were acutely activated during the early phase (1 day post-injection), while extracellular signal-regulated kinase 1/2 and cAMP responsive element-binding protein activation showed biphasic increases during the early (1 day post-injection) and late phases (7-14 days post-injection). Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression increased significantly during the late phase (7-14 days post-injection). Therefore, methotrexate treatment affects synaptic plasticity-related signals in the adult mouse hippocampus, suggesting that changes in synaptic plasticity-related signals may be associated with neuronal survival and plasticity-related cellular remodeling. 展开更多
关键词 突触可塑性 甲氨蝶呤 相关信号 成年小鼠 时间分布 CAMP反应元件结合蛋白 海马 细胞外信号调节激酶
下载PDF
Ninjurin-1: a biomarker for reflecting the process of neuroinflammation after spinal cord injury 被引量:1
6
作者 Poornima D.E.Weerasinghe-Mudiyanselage Jeongtae Kim +3 位作者 Yuna Choi changjong moon Taekyun Shin Meejung Ahn 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第7期1331-1335,共5页
Previous studies have shown that Ninjurin-1 participates in cell trafficking and axonal growth following central and peripheral nervous system neuroinflammation.But its precise roles in these processes and involvement... Previous studies have shown that Ninjurin-1 participates in cell trafficking and axonal growth following central and peripheral nervous system neuroinflammation.But its precise roles in these processes and involvement in spinal cord injury pathophysiology remain unclear.Western blot assay revealed that Ninjurin-1 levels in rats with spinal cord injury exhibited an upregulation until day 4 post-injury and slightly decreased thereafter compared with sham controls.Immunohistochemistry analysis revealed that Ninjurin-1 immunoreactivity in rats with spinal cord injury sharply increased on days 1 and 4 post-injury and slightly decreased on days 7 and 21 post-injury compared with sham controls.Ninjurin-1 immunostaining was weak in vascular endothelial cells, ependymal cells, and some glial cells in sham controls while it was relatively strong in macrophages, microglia, and reactive astrocytes.These findings suggest that a variety of cells, including vascular endothelial cells, macrophages, and microglia, secrete Ninjurin-1 and they participate in the pathophysiology of compression-induced spinal cord injury.All experimental procedures were approved by the Care and Use of Laboratory Animals of Jeju National University(approval No.2018-0029) on July 6, 2018. 展开更多
关键词 ASTROCYTES clip compression injury macrophage MICROGLIA NEUROINFLAMMATION Ninjurin-1 rat spinal cord
下载PDF
Intravenous morphine self-administration alters accumbal microRNA profiles in the mouse brain 被引量:1
7
作者 Juhwan Kim Heh-In Im changjong moon 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期77-85,共9页
A significant amount of evidence indicates that micro RNAs(mi RNAs) play an important role in drug addiction. The nucleus accumbens(NAc) is a critical part of the brain's reward circuit and is involved in a variet... A significant amount of evidence indicates that micro RNAs(mi RNAs) play an important role in drug addiction. The nucleus accumbens(NAc) is a critical part of the brain's reward circuit and is involved in a variety of psychiatric disorders, including depression, anxiety, and drug addiction. However, few studies have examined the expression of mi RNAs and their functional roles in the NAc under conditions of morphine addiction. In this study, mice were intravenously infused with morphine(0.01, 0.03, 0.3, 1 and 3 mg/kg/infusion) and showed inverted U-shaped response. After morphine self-administration, NAc was used to analyze the functional networks of altered mi RNAs and their putative target m RNAs in the NAc following intravenous self-administration of morphine. We utilized several bioinformatics tools, including Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway mapping and Cy Target Linker. We found that 62 mi RNAs were altered and exhibited differential expression patterns. The putative targets were related to diverse regulatory functions, such as neurogenesis, neurodegeneration, and synaptic plasticity, as well as the pharmacological effects of morphine(receptor internalization/endocytosis). The present findings provide novel insights into the regulatory mechanisms of accumbal molecules under conditions of morphine addiction and identify several novel biomarkers associated with morphine addiction. 展开更多
关键词 nerve regeneration nucleus accumbens MICRORNA MORPHINE SELF-ADMINISTRATION BIOINFORMATICS neural regeneration
下载PDF
Effects of cancer therapy on hippocampus-related function
8
作者 Miyoung Yang changjong moon 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1572-1573,共2页
Cancer treatments such as chemotherapy and radiotherapy are widely used to treat primary and metastatic cancers.Epidemiological studies have demonstrated that these types of treatment can effectively and successfully ... Cancer treatments such as chemotherapy and radiotherapy are widely used to treat primary and metastatic cancers.Epidemiological studies have demonstrated that these types of treatment can effectively and successfully extend the lifespan of cancer patients,but they are 展开更多
关键词 癌症治疗 海马 放射治疗 流行病学 癌症患者 神经系统 认知障碍 转移性
下载PDF
Neurotoxicity of cancer chemotherapy
9
作者 Miyoung Yang changjong moon 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第17期1606-1614,共9页
There is accumulating clinical evidence that chemotherapeutic agents induce neurological side effects, including memory deficits and mood disorders, in cancer patients who have undergone chemotherapeutic treatments. T... There is accumulating clinical evidence that chemotherapeutic agents induce neurological side effects, including memory deficits and mood disorders, in cancer patients who have undergone chemotherapeutic treatments. This review focuses on chemotherapy-induced neurodegeneration and hippocampal dysfunctions and related mechanisms as measured by in vivo and in vitro approaches. These investigations are helpful in determining how best to further explore the causal mechanisms of chemotherapy-induced neurological side effects and in providing direction for the future development of novel optimized chemotherapeutic agents. 展开更多
关键词 化疗药物 神经毒性 癌症患者 神经系统 功能障碍 记忆障碍 副作用 机制
下载PDF
Epigenetic mechanisms involved in the neuroprotective effect of scorpion extract in a Parkinson's disease murine model based on multi-omics approach 被引量:1
10
作者 Joong Sun Kim Hye-Sun Lim +7 位作者 Byeong Cheol moon Mary Jasmin Ang Sung-Ho Kim changjong moon Boseok Seong Yunji Jang Hyung-Yong Kim Chul Kim 《Journal of Traditional Chinese Medicine》 SCIE CSCD 2021年第3期390-396,共7页
OBJECTIVE: To investigate whether scorpion extract elicits a neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-treated mice models, and the genes associated with the therapeutic effects usin... OBJECTIVE: To investigate whether scorpion extract elicits a neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-treated mice models, and the genes associated with the therapeutic effects using RNA sequencing(seq)analysis.METHODS: This study investigated the changes in interaction between messenger ribonucleic acid(m RNA) expression and deoxyribonucleic acid(DNA) methylation related to the protective effects of scorpion extracts, in the substantia nigra(SN)region of a MPTP-induced Parkinson's disease(PD)model.RESULTS: In this model, scorpion extracts attenuated the motor impairment as demonstrated by the rotarod and open field tests. Scorpion extracts consistently attenuated the decrease of tyrosine hydroxylase(TH) positive neural cells in the SN and striatum of mice. We profiled genomewide DNA methylation using Methyl-Seq and measured the transcriptome using RNA-Seq in murine SN in the following groups: vehicle-treated MPTP-induced PD mice and scorpion extracttreated MPTP-induced PD mice. In total, 13 479 differentially expressed genes were identified in association with the anti-PD effect of the scorpion extract, mainly in the promoter and coding regions.Among them, 47 were negatively correlated downregulated genes. Nineteen genes out of 47 downregulated genes were negatively correlated with the expression of the other 28 genes. Among these genes, SGSM1 was related to dopaminergic neurons including dopamine transporters, TH, dihydroxyphenylalanine decarboxylase, and dopamine D2 receptor.CONCLUSION: This study provides insights into the anti-parkinsonian effects of scorpion extract and reveals the epigenetic targets in its therapeutic mechanism. 展开更多
关键词 SCORPIONS 1-methyl-4-phenyl-1 2 3 6-TETRAHYDROPYRIDINE Parkinson disease DNA methylation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部