Tea trichomes contribute significantly to tea flavors by providing diverse and specific flavor-determining metabolites,including catechins,caffeine,theanine,and volatiles.However,not much is known about the physiologi...Tea trichomes contribute significantly to tea flavors by providing diverse and specific flavor-determining metabolites,including catechins,caffeine,theanine,and volatiles.However,not much is known about the physiological functions of tea trichomes in tea plant adaptation to complex environments,nor the trichome development.Tea trichomes not only build up chemical defenses,but also act as the first physical barrier protecting herbivore attacks,reflecting high light and UV-B radiation,and preventing water loss.Moreover,transcriptome profiling on the tea trichomes compared with the trichome-removed leaves also showed that tea trichomes highly expressed numerous defense-related genes involved in protection from high light and UV-B radiation,cold stress,disease resistance signal transduction,anti-herbivore or anti-abiotic peptide biosynthesis,and other defense responses.Several pieces of experimental evidence supported the notes,highlighting the roles of tea trichomes in plant defenses against both abiotic and biotic stresses.The study provides fresh insights into the multiple protective functions of tea trichome for tea plant adaptation to harsh environments.The new understanding on tea trichomes could benefit the development of better breading strategy for new tea varieties with greater adaption and tolerance to changing environmental challenges.展开更多
In this paper,the microgrid economic scheduling mathematical model considering the integration of plug-in hybrid electric vehicles(PHEVs)is presented and the influence of different charging and discharging modes on mi...In this paper,the microgrid economic scheduling mathematical model considering the integration of plug-in hybrid electric vehicles(PHEVs)is presented and the influence of different charging and discharging modes on microgrid economic operation is analyzed.The generic algorithm is used to find an economically optimal solution for the microgrid and PHEV owners.The scheduling of PHEVs and the microgrid are optimized to reduce daily electricity cost and the potential benefits of controlled charging/discharging are explored systematically.Constraints caused by vehicle utilization as well as technical limitations of distributed generation and energy storage system are taken into account.The proposed economic scheduling is evaluated through a simulation by using a typical grid-connected microgrid model.展开更多
This study presents a centralized control scheme that coordinates parallel operations of power conditioning system(PCS)for the grid interactions of electric vehicles(EVs)in EV charge-discharge and storage integration ...This study presents a centralized control scheme that coordinates parallel operations of power conditioning system(PCS)for the grid interactions of electric vehicles(EVs)in EV charge-discharge and storage integration station.Key issues for the control and operation of PCS under various operation modes are discussed,including vehicle to grid(V2G)mode,stand-alone mode and seamless transfer mode.The intelligent multi-mode charge-discharge method is utilized for the V2G mode,and the parallel control method based on communication network is adopted for the standalone mode.In addition,a novel seamless transfer strategy is proposed,which is able to implement PCS transition between V2G mode and stand-alone mode.The detailed process of the seamless transfer between the two modes is illustrated.Experimental results are presented to show the performance and feasibility of this strategy.展开更多
A full-duplex radiant energy converter based on both betavoltaic and photovoltaic effects in an easyto-implement way is an attractive alternative for the autonomous wireless sensor microsystem.Here,we report a novel b...A full-duplex radiant energy converter based on both betavoltaic and photovoltaic effects in an easyto-implement way is an attractive alternative for the autonomous wireless sensor microsystem.Here,we report a novel beta/photovoltaic cell based on free-standing Zn O nanorod arrays(ZNRAs)modified with metallic single-walled carbon nanotubes(m-SWCNTs),using radioisotope63 Ni as beta-emitting source.The ZNRAs were grown on Al-doped Zn O(AZO)conductive glass using hydrothermal method.The optimum length and diameter of Zn O nanorods were determined by Monte Carlo simulation for beta energy deposition in ZNRAs.The m-SWCNTs were anchored into the ZNRAs to form a three-dimensional(3-D)Schottky junction structure for effectively separating the beta/photo-excited electron-hole pairs.Experimentally,the betavoltaic and photovoltaic effects were confirmed through the I-V measurements of beta/photovoltaic cells under beta/UV/Vis irradiations,respectively.It is suggested that the m-SWCNTs play key role for the enhancement of beta/photovoltaic performance through the formation of extensive3-D Schottky junction,the conductive network for hole transport,and the surface plasmon resonance exciton absorption for visible light.展开更多
基金the National Natural Science Foundation of China(32002089)the Anhui Provincial Natural Science Foundation(201902a05020408)+1 种基金the National Key Research and Development Program of China(2018YFD1000601)the funding from Anhui Agricultural University and the State Key Laboratory of Tea Plant Biology and Utilization.
文摘Tea trichomes contribute significantly to tea flavors by providing diverse and specific flavor-determining metabolites,including catechins,caffeine,theanine,and volatiles.However,not much is known about the physiological functions of tea trichomes in tea plant adaptation to complex environments,nor the trichome development.Tea trichomes not only build up chemical defenses,but also act as the first physical barrier protecting herbivore attacks,reflecting high light and UV-B radiation,and preventing water loss.Moreover,transcriptome profiling on the tea trichomes compared with the trichome-removed leaves also showed that tea trichomes highly expressed numerous defense-related genes involved in protection from high light and UV-B radiation,cold stress,disease resistance signal transduction,anti-herbivore or anti-abiotic peptide biosynthesis,and other defense responses.Several pieces of experimental evidence supported the notes,highlighting the roles of tea trichomes in plant defenses against both abiotic and biotic stresses.The study provides fresh insights into the multiple protective functions of tea trichome for tea plant adaptation to harsh environments.The new understanding on tea trichomes could benefit the development of better breading strategy for new tea varieties with greater adaption and tolerance to changing environmental challenges.
基金This work was supported in part by the National Natural Science Foundation of China(No.51477067)in part by the China-UK Joint Project of the National Natural Science Foundation of China(No.51361130150)in part by the Fundamental Research Funds for the Central Universities(No.2014QN219).
文摘In this paper,the microgrid economic scheduling mathematical model considering the integration of plug-in hybrid electric vehicles(PHEVs)is presented and the influence of different charging and discharging modes on microgrid economic operation is analyzed.The generic algorithm is used to find an economically optimal solution for the microgrid and PHEV owners.The scheduling of PHEVs and the microgrid are optimized to reduce daily electricity cost and the potential benefits of controlled charging/discharging are explored systematically.Constraints caused by vehicle utilization as well as technical limitations of distributed generation and energy storage system are taken into account.The proposed economic scheduling is evaluated through a simulation by using a typical grid-connected microgrid model.
基金This work was supported in part by the National Natural science Foundation of China under Grant 51361130150 and Grant 51477067in part by the Fundamental Research Funds for the Central Universities under Grant 2014QN219.
文摘This study presents a centralized control scheme that coordinates parallel operations of power conditioning system(PCS)for the grid interactions of electric vehicles(EVs)in EV charge-discharge and storage integration station.Key issues for the control and operation of PCS under various operation modes are discussed,including vehicle to grid(V2G)mode,stand-alone mode and seamless transfer mode.The intelligent multi-mode charge-discharge method is utilized for the V2G mode,and the parallel control method based on communication network is adopted for the standalone mode.In addition,a novel seamless transfer strategy is proposed,which is able to implement PCS transition between V2G mode and stand-alone mode.The detailed process of the seamless transfer between the two modes is illustrated.Experimental results are presented to show the performance and feasibility of this strategy.
基金the financial support of the project from the National Natural Science Foundation of China(Grant No.61574117)the Natural Science Foundation of Guangdong Province(Grant No.2018B030311002)the China Scholarship Council(Grant No.201806310044)。
文摘A full-duplex radiant energy converter based on both betavoltaic and photovoltaic effects in an easyto-implement way is an attractive alternative for the autonomous wireless sensor microsystem.Here,we report a novel beta/photovoltaic cell based on free-standing Zn O nanorod arrays(ZNRAs)modified with metallic single-walled carbon nanotubes(m-SWCNTs),using radioisotope63 Ni as beta-emitting source.The ZNRAs were grown on Al-doped Zn O(AZO)conductive glass using hydrothermal method.The optimum length and diameter of Zn O nanorods were determined by Monte Carlo simulation for beta energy deposition in ZNRAs.The m-SWCNTs were anchored into the ZNRAs to form a three-dimensional(3-D)Schottky junction structure for effectively separating the beta/photo-excited electron-hole pairs.Experimentally,the betavoltaic and photovoltaic effects were confirmed through the I-V measurements of beta/photovoltaic cells under beta/UV/Vis irradiations,respectively.It is suggested that the m-SWCNTs play key role for the enhancement of beta/photovoltaic performance through the formation of extensive3-D Schottky junction,the conductive network for hole transport,and the surface plasmon resonance exciton absorption for visible light.