Multifunctional electrochromic-induced rechargeable aqueous batteries(MERABs) integrate electrochromism and aqueous ion batteries into one platform, which is able to deliver the conversion and storage of photo-thermal...Multifunctional electrochromic-induced rechargeable aqueous batteries(MERABs) integrate electrochromism and aqueous ion batteries into one platform, which is able to deliver the conversion and storage of photo-thermal-electrochemical sources.Aqueous ion batteries compensate for the drawbacks of slow kinetic reactions and unsatisfied storage capacities of electrochromic devices. On the other hand, electrochromic technology can enable dynamically regulation of solar light and heat radiation. However,MERABs still face several technical issues, including a trade-off between electrochromic and electrochemical performance, low conversion efficiency and poor service life. In this connection, novel device configuration and electrode materials, and an optimized compatibility need to be considered for multidisciplinary applications. In this review,the unique advantages, key challenges and advanced applications are elucidated in a timely and comprehensive manner. Firstly, the prerequisites for effective integration of the working mechanism and device configuration, as well as the choice of electrode materials are examined. Secondly, the latest advances in the applications of MERABs are discussed, including wearable, self-powered, integrated systems and multisystem conversion. Finally, perspectives on the current challenges and future development are outlined, highlighting the giant leap required from laboratory prototypes to large-scale production and eventual commercialization.展开更多
基金support by Shanghai Municipal Education Commission (No. 2019-01-07-00-09E00020), for research conducted at the Shanghai Universitysupport by Independent depolyment project of Qinghai Institute of Salt Lakes, Chinese Academy of Sciences (E260GC0401)support by the Singapore National Research Foundation (NRF-CRP26-2021-0003, NRF), for research conducted at the National University of Singapore。
文摘Multifunctional electrochromic-induced rechargeable aqueous batteries(MERABs) integrate electrochromism and aqueous ion batteries into one platform, which is able to deliver the conversion and storage of photo-thermal-electrochemical sources.Aqueous ion batteries compensate for the drawbacks of slow kinetic reactions and unsatisfied storage capacities of electrochromic devices. On the other hand, electrochromic technology can enable dynamically regulation of solar light and heat radiation. However,MERABs still face several technical issues, including a trade-off between electrochromic and electrochemical performance, low conversion efficiency and poor service life. In this connection, novel device configuration and electrode materials, and an optimized compatibility need to be considered for multidisciplinary applications. In this review,the unique advantages, key challenges and advanced applications are elucidated in a timely and comprehensive manner. Firstly, the prerequisites for effective integration of the working mechanism and device configuration, as well as the choice of electrode materials are examined. Secondly, the latest advances in the applications of MERABs are discussed, including wearable, self-powered, integrated systems and multisystem conversion. Finally, perspectives on the current challenges and future development are outlined, highlighting the giant leap required from laboratory prototypes to large-scale production and eventual commercialization.