BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and th...BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and there are no drugs to prevent the progression of gastric precancerous lesions to GC.Therefore,it is necessary to find a novel drug that is inexpensive and preventive to against GC.AIM To explore the effects of H.pylori and Moluodan on the Wnt/β-Catenin signaling pathway and precancerous lesions of GC(PLGC).METHODS Mice were divided into the control,N-methyl-N-nitrosourea(MNU),H.pylori+MNU,and Moluodan groups.We first created an H.pylori infection model in the H.pylori+MNU and Moluodan groups.A PLGC model was created in the remaining three groups except for the control group.Moluodan was fed to mice in the Moloudan group ad libitum.The general condition of mice were observed during the whole experiment period.Gastric tissues of mice were grossly and microscopically examined.Through quantitative real-time PCR(qRT-PCR)and Western blotting analysis,the expression of relevant genes were detected.RESULTS Mice in the H.pylori+MNU group showed the worst performance in general condition,gastric tissue visual and microscopic observation,followed by the MNU group,Moluodan group and the control group.QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes,the results showed that the H.pylori+MNU group had the highest expression,followed by the MNU group,Moluodan group and the control group.CONCLUSION H.pylori can activate the Wnt/β-catenin signaling pathway,thereby facilitating the development and progression of PLGC.Moluodan suppressed the activation of the Wnt/β-catenin signaling pathway,thereby decreasing the progression of PLGC.展开更多
AIM:To reveal the functions of micro RNAs(mi RNAs) with respect to hepatic stellate cells(HSCs) in response to portal hypertension.METHODS:Primary rat HSCs were exposed to static water pressure(10 mm Hg,1 h) and the p...AIM:To reveal the functions of micro RNAs(mi RNAs) with respect to hepatic stellate cells(HSCs) in response to portal hypertension.METHODS:Primary rat HSCs were exposed to static water pressure(10 mm Hg,1 h) and the pressureinduced mi RNA expression profile was detected by next-generation sequencing. Quantitative real-time polymerase chain reaction was used to verify the expression of mi RNAs. A potential target of Mi R-9a-5p was measured by a luciferase reporter assay and Western blot. CCK-8 assay and Transwell assay were used to detect the proliferation and migration of HSCs under pressure.RESULTS:According to the profile,the expression of mi R-9a-5p was further confirmed to be significantly increased after pressure overload in HSCs(3.70 ± 0.61 vs 0.97 ± 0.15,P = 0.0226),which resulted in the proliferation,migration and activation of HSCs. In vivo,the up-regulation of mi R-9a-5p(2.09 ± 0.91 vs 4.27 ± 1.74,P = 0.0025) and the down-regulation of Sirt1(2.41 ± 0.51 vs 1.13 ± 0.11,P = 0.0006) were observed in rat fibrotic liver with portal hypertension. Sirt1 was a potential target gene of mi R-9a-5p. Through restoringthe expression of Sirt1 in mi R-9a-5p transfected HSCs on pressure overload,we found that overexpression of Sirt1 could partially abrogate the mi R-9a-5p mediated suppression of the proliferation,migration and activation of HSCs. CONCLUSION:Our results suggest that during liver fibrosis,portal hypertension may induce the proliferation,migration and activation of HSCs through the up-regulation of mi R-9a-5p,which targets Sirt1.展开更多
Functional control of CRISPR/Cas9 is essential for precise gene manipulation.Chemical engineering of guide RNA(gRNA)provides diverse approaches for conditional control of CRISPR/Cas9 function with a variety of chemica...Functional control of CRISPR/Cas9 is essential for precise gene manipulation.Chemical engineering of guide RNA(gRNA)provides diverse approaches for conditional control of CRISPR/Cas9 function with a variety of chemical reactive groups.However,previous investigations into chemically engineering gRNA only unidirectionally regulated the CRISPR/Cas9 function via stimuli-induced caging/decaging processes.Herein,we propose a combinatory strategy to engineer the dynamics of gRNA in which photocontrolled strand-displacement reactions coupled with sequence designs of gRNA can achieve lightinduced switching-on/off control of CRISPR/Cas9 function.Biochemical analysis and cellular gene regulation indicate this approach is capable of both activating and deactivating CRISPR/Cas9 activities using light irradiation.Moreover,photocontrolled multiplex modulations of gene expression for opposite regulatory effects have also been achieved simultaneously under the same cellular context.This work establishes an essential principle for construction of stimuli-induced switching-on/off modulations of gRNA that can greatly enrich the versatility of conditional control for a variety of CRISPR/Cas9-based applications.展开更多
基金All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of the Southwest Medical University(Protocol No.SWMU20230818).
文摘BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and there are no drugs to prevent the progression of gastric precancerous lesions to GC.Therefore,it is necessary to find a novel drug that is inexpensive and preventive to against GC.AIM To explore the effects of H.pylori and Moluodan on the Wnt/β-Catenin signaling pathway and precancerous lesions of GC(PLGC).METHODS Mice were divided into the control,N-methyl-N-nitrosourea(MNU),H.pylori+MNU,and Moluodan groups.We first created an H.pylori infection model in the H.pylori+MNU and Moluodan groups.A PLGC model was created in the remaining three groups except for the control group.Moluodan was fed to mice in the Moloudan group ad libitum.The general condition of mice were observed during the whole experiment period.Gastric tissues of mice were grossly and microscopically examined.Through quantitative real-time PCR(qRT-PCR)and Western blotting analysis,the expression of relevant genes were detected.RESULTS Mice in the H.pylori+MNU group showed the worst performance in general condition,gastric tissue visual and microscopic observation,followed by the MNU group,Moluodan group and the control group.QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes,the results showed that the H.pylori+MNU group had the highest expression,followed by the MNU group,Moluodan group and the control group.CONCLUSION H.pylori can activate the Wnt/β-catenin signaling pathway,thereby facilitating the development and progression of PLGC.Moluodan suppressed the activation of the Wnt/β-catenin signaling pathway,thereby decreasing the progression of PLGC.
基金Supported by National Natural Science Foundation of China,No.11272342/A0205
文摘AIM:To reveal the functions of micro RNAs(mi RNAs) with respect to hepatic stellate cells(HSCs) in response to portal hypertension.METHODS:Primary rat HSCs were exposed to static water pressure(10 mm Hg,1 h) and the pressureinduced mi RNA expression profile was detected by next-generation sequencing. Quantitative real-time polymerase chain reaction was used to verify the expression of mi RNAs. A potential target of Mi R-9a-5p was measured by a luciferase reporter assay and Western blot. CCK-8 assay and Transwell assay were used to detect the proliferation and migration of HSCs under pressure.RESULTS:According to the profile,the expression of mi R-9a-5p was further confirmed to be significantly increased after pressure overload in HSCs(3.70 ± 0.61 vs 0.97 ± 0.15,P = 0.0226),which resulted in the proliferation,migration and activation of HSCs. In vivo,the up-regulation of mi R-9a-5p(2.09 ± 0.91 vs 4.27 ± 1.74,P = 0.0025) and the down-regulation of Sirt1(2.41 ± 0.51 vs 1.13 ± 0.11,P = 0.0006) were observed in rat fibrotic liver with portal hypertension. Sirt1 was a potential target gene of mi R-9a-5p. Through restoringthe expression of Sirt1 in mi R-9a-5p transfected HSCs on pressure overload,we found that overexpression of Sirt1 could partially abrogate the mi R-9a-5p mediated suppression of the proliferation,migration and activation of HSCs. CONCLUSION:Our results suggest that during liver fibrosis,portal hypertension may induce the proliferation,migration and activation of HSCs through the up-regulation of mi R-9a-5p,which targets Sirt1.
基金the National Natural Science Foundation of China(grant nos.21977122 and 22222706)the National Key R&D Program of China(grant no.2020YFA0211200)the Guangdong Basic Research Center of Excellence for Functional Molecular Engineering.
文摘Functional control of CRISPR/Cas9 is essential for precise gene manipulation.Chemical engineering of guide RNA(gRNA)provides diverse approaches for conditional control of CRISPR/Cas9 function with a variety of chemical reactive groups.However,previous investigations into chemically engineering gRNA only unidirectionally regulated the CRISPR/Cas9 function via stimuli-induced caging/decaging processes.Herein,we propose a combinatory strategy to engineer the dynamics of gRNA in which photocontrolled strand-displacement reactions coupled with sequence designs of gRNA can achieve lightinduced switching-on/off control of CRISPR/Cas9 function.Biochemical analysis and cellular gene regulation indicate this approach is capable of both activating and deactivating CRISPR/Cas9 activities using light irradiation.Moreover,photocontrolled multiplex modulations of gene expression for opposite regulatory effects have also been achieved simultaneously under the same cellular context.This work establishes an essential principle for construction of stimuli-induced switching-on/off modulations of gRNA that can greatly enrich the versatility of conditional control for a variety of CRISPR/Cas9-based applications.