Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene we...Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene were transplanted into the complete transection site of spinal cord at the lumbar 4 (L4) level in rats. Motor function of rats' hind limbs was observed and HE and X-gal immunoeytochemical staining, in situ hybridization, and retrograde HRP tracing were also performed. Results BDNF-NSCs survived and integrated well with host spinal cord. In the transplant group, some X-gal positive, NF-200 positive, GFAP positive, BDNF positive, and BDNF mRNA positive cells, and many NF-200 positive nerve fibers were observed in the injury site. Retrograde HRP tracing through sciatic nerve showed some HRP positive cells and nerve fibers near the rostral side of the injury one month after transplant and with time, they increased in number. Examinations on rats' motor function and behavior demonstrated that motor function of rats' hind limbs improved better in the transplant group than the injury group. Conclusion BDNF-NSCs can survive, differentiate, and partially integrate with host spinal cord, and they significantly ameliorate rats' motor function of hind limbs, indicating their promising role in repairing spinal cord injury.展开更多
A series of Sr_(2)MgSi_(2)O_(7):Tb^(3+)nanophosphors is prepared using a high-temperature solid-state reaction.The x-ray diffraction patterns show that the crystal structure of the sample is not significantly affected...A series of Sr_(2)MgSi_(2)O_(7):Tb^(3+)nanophosphors is prepared using a high-temperature solid-state reaction.The x-ray diffraction patterns show that the crystal structure of the sample is not significantly affected by Tb^(3+)ions.However,the images of the scanning electron microscope illustrate that the average size of nanoparticles becomes larger with the increase of Tb^(3+)concentration.Unlike earlier investigations on down-conversion emission of Tb^(3+)ion excited by deep ultraviolet light,in this work,the photoluminescence characteristics of Sr_(2)MgSi_(2)O_(7)nanophosphors doped with different Tb^(3+)concentrations are analyzed under 374-nm excitations.The intense green emission at 545 nm is observed at an optimal doping concentration of 1.6 mol%.The main reason for the concentration quenching is due to the electric dipole-electric dipole interaction among Tb^(3+)ions.展开更多
文摘Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene were transplanted into the complete transection site of spinal cord at the lumbar 4 (L4) level in rats. Motor function of rats' hind limbs was observed and HE and X-gal immunoeytochemical staining, in situ hybridization, and retrograde HRP tracing were also performed. Results BDNF-NSCs survived and integrated well with host spinal cord. In the transplant group, some X-gal positive, NF-200 positive, GFAP positive, BDNF positive, and BDNF mRNA positive cells, and many NF-200 positive nerve fibers were observed in the injury site. Retrograde HRP tracing through sciatic nerve showed some HRP positive cells and nerve fibers near the rostral side of the injury one month after transplant and with time, they increased in number. Examinations on rats' motor function and behavior demonstrated that motor function of rats' hind limbs improved better in the transplant group than the injury group. Conclusion BDNF-NSCs can survive, differentiate, and partially integrate with host spinal cord, and they significantly ameliorate rats' motor function of hind limbs, indicating their promising role in repairing spinal cord injury.
基金Project supported by the National Natural Science Foundation of China(Grant No.11004092)the Foundation of Science and Technology Department of Liaoning Province,China(Grant No.201602455)。
文摘A series of Sr_(2)MgSi_(2)O_(7):Tb^(3+)nanophosphors is prepared using a high-temperature solid-state reaction.The x-ray diffraction patterns show that the crystal structure of the sample is not significantly affected by Tb^(3+)ions.However,the images of the scanning electron microscope illustrate that the average size of nanoparticles becomes larger with the increase of Tb^(3+)concentration.Unlike earlier investigations on down-conversion emission of Tb^(3+)ion excited by deep ultraviolet light,in this work,the photoluminescence characteristics of Sr_(2)MgSi_(2)O_(7)nanophosphors doped with different Tb^(3+)concentrations are analyzed under 374-nm excitations.The intense green emission at 545 nm is observed at an optimal doping concentration of 1.6 mol%.The main reason for the concentration quenching is due to the electric dipole-electric dipole interaction among Tb^(3+)ions.