The Heilongjiang Jianbiannongchang area is located at the confluence of the Great and Lesser Xing’an Ranges.This area has a complex magmatic and tectonic evolutionary history that has resulted in a complex and divers...The Heilongjiang Jianbiannongchang area is located at the confluence of the Great and Lesser Xing’an Ranges.This area has a complex magmatic and tectonic evolutionary history that has resulted in a complex and diverse geological background for mineralization.In this study,isometric logarithmic ratio(ILR)transformations of Au,Cu,Pb,Zn,and Sb contents were performed in the1:50,000 soil geochemical data of the Jianbiannongchang area.Robust principal component analysis(RPCA)was conducted based on ILR transformation.The local singularity and spectrum-area(S-A)methods were used to extract information on mineralogic anomalies.The results showed that:(1)the transformed data eliminated the influence of the original data closure effect,and the PC1and PC2 information obtained by applying RPCA reflected ore-producing element anomalies dominated by Au and Cu.(2)The local singularity method can enhance the information of the local strong and weak slow anomalies.After performing local singularity analysis on PC1 and PC2,the obtained local anomalies reflected the local singularity spatial anomaly patterns related to Cu and Au mineralization in this area,which is an effective method for trapping ore-producing anomalies.(3)Furthermore,the composite anomaly decomposition of PC1 and PC2 was performed using the S-A method,and the screened anomalous and background fields reflect the ore-producing anomalies related to Cu and Au mineralization.This information is in agreement with known Cu and Au mineralization.(4)The geochemical anomalies with mineralization potential were obtained outside the known mineralization sites by integrating the information of oreproducing anomalies extracted by the local singularity and S-A methods,providing the theoretical basis and exploration direction for future exploration in the study area.展开更多
High arsenic(As)groundwater is a global problem primarily originating from As-enriched sediments.The provenance(source)and release mechanisms(sinks)of high As sediment have been identified,but the source-sink transfer...High arsenic(As)groundwater is a global problem primarily originating from As-enriched sediments.The provenance(source)and release mechanisms(sinks)of high As sediment have been identified,but the source-sink transfer is poorly understood,especially the influence of geological and surface processes.In this study,we explore the roles of tectonic movement and Yellow River evolution in provenance formation processes and evaluate the combined effects of provenance and sediment age on the As content of aquifer sediments in the northern Hetao Basin of Inner Mongolia.Based on optically stimulated luminescence(OSL)and 14C dating and detrital zircon U-Pb,As content,and lithological analyses of a 400 m core,we reconstructed As changes over the last 160 ka.Our results show clay deposited in a paleo-lake during the Gonghe movement period in the late Pleistocene(∼100 ka B.P.)is enriched in As(31.8μg/g)due to significant provenance contributions of the As-bearing Langshan Group under tectonic uplift and mountain erosion.In contrast,clay deposited in the middle Pleistocene(∼160 ka B.P.)has lower As content(7.3μg/g)due to the Yellow River as the primary provenance.Accordingly,the provenance of basin As forced by tectonic uplift and Yellow River evolution determines the background As of aquifer sediments.After deposition,sediment As content decays over time,with higher decay rates in coarse-grained sands than fine-grained.Overall,both provenance formation and sediment age,representing initial and dynamic states of solid phase As,jointly determine the As content of aquifer sediments.More solid phase As provided by younger sediments from the proximal orogenic provenance and reducing conditions due to frequent river-lake transitions,jointly lead to higher As concentrations in shallow groundwater.The study highlights the potential for using a combined analysis of the tectonic movement-surface processes-environment system to improve understanding of geogenic high As groundwater over global large sedimentary basins in the proximity of young orogenic belts.展开更多
The tectonic evolution and history of continental accretion of the eastern Central Asian Orogenic Belt(CAOB)are not yet fully understood.In this study,we investigate Permian intrusive rocks from the Jiamusi Block of t...The tectonic evolution and history of continental accretion of the eastern Central Asian Orogenic Belt(CAOB)are not yet fully understood.In this study,we investigate Permian intrusive rocks from the Jiamusi Block of the eastern CAOB to constrain the tectonic evolution and continental accretion of this region during the late-stage evolution of the Paleo-Asian Ocean.Our new data show that Early Permian gabbro-diorites were derived from the partial melting of depleted mantle metasomatized by oceanic-slab-released fluids.Middle Permian adakitic granites have low Na2O and MgO and high K2O contents,indicating a thickened-lower-crust source.Late Permian S-type granites were derived from the partial melting of continental crust.A compilation of the available geochronological data for Permian intrusive rocks(including adakitic and A-,S-,and I-type granites and mafic rocks)from the eastern CAOB reveals that the A-type granites formed mainly during the Early–Middle Permian,S-type and adakitic granites mostly during the Middle–Late Permian,and I-type granites and mantle-derived mafic rocks throughout the Permian.The A-type granites,which are proposed to have been sourced from thinned continental crust,indicate an extensional setting in the eastern CAOB during the Early Permian.The Middle–Late Permian adakitic granites imply a thickened continental crust,which indicates a compressional setting.Therefore,the eastern CAOB underwent a transition from extension to compression during the Middle Permian,which was probably triggered by the late-stage subduction of Paleo-Asian oceanic crust.Considering the petrogenesis of the intrusive rocks and inferred regional tectonic evolution of the eastern CAOB,we propose that vertical underplating of mantle-and oceanic-slabderived magmas contributed the materials for continental crust accretion.展开更多
基金supported by the Project of the Natural Science Foundation of Liaoning Province(2020-BS-258)the Scientific Research Fund Project of the Educational Department of Liaoning Provincial(LJ2020JCL010)+1 种基金The project was supported by the discipline innovation team of Liaoning Technical University(LNTU20TD-14)the Key Research and Development Project of Heilongjiang Province(GA21A204).
文摘The Heilongjiang Jianbiannongchang area is located at the confluence of the Great and Lesser Xing’an Ranges.This area has a complex magmatic and tectonic evolutionary history that has resulted in a complex and diverse geological background for mineralization.In this study,isometric logarithmic ratio(ILR)transformations of Au,Cu,Pb,Zn,and Sb contents were performed in the1:50,000 soil geochemical data of the Jianbiannongchang area.Robust principal component analysis(RPCA)was conducted based on ILR transformation.The local singularity and spectrum-area(S-A)methods were used to extract information on mineralogic anomalies.The results showed that:(1)the transformed data eliminated the influence of the original data closure effect,and the PC1and PC2 information obtained by applying RPCA reflected ore-producing element anomalies dominated by Au and Cu.(2)The local singularity method can enhance the information of the local strong and weak slow anomalies.After performing local singularity analysis on PC1 and PC2,the obtained local anomalies reflected the local singularity spatial anomaly patterns related to Cu and Au mineralization in this area,which is an effective method for trapping ore-producing anomalies.(3)Furthermore,the composite anomaly decomposition of PC1 and PC2 was performed using the S-A method,and the screened anomalous and background fields reflect the ore-producing anomalies related to Cu and Au mineralization.This information is in agreement with known Cu and Au mineralization.(4)The geochemical anomalies with mineralization potential were obtained outside the known mineralization sites by integrating the information of oreproducing anomalies extracted by the local singularity and S-A methods,providing the theoretical basis and exploration direction for future exploration in the study area.
基金supported by the National Natural Science Foundation of China(Grant Nos.42301094,41972192,and 41825017)。
文摘High arsenic(As)groundwater is a global problem primarily originating from As-enriched sediments.The provenance(source)and release mechanisms(sinks)of high As sediment have been identified,but the source-sink transfer is poorly understood,especially the influence of geological and surface processes.In this study,we explore the roles of tectonic movement and Yellow River evolution in provenance formation processes and evaluate the combined effects of provenance and sediment age on the As content of aquifer sediments in the northern Hetao Basin of Inner Mongolia.Based on optically stimulated luminescence(OSL)and 14C dating and detrital zircon U-Pb,As content,and lithological analyses of a 400 m core,we reconstructed As changes over the last 160 ka.Our results show clay deposited in a paleo-lake during the Gonghe movement period in the late Pleistocene(∼100 ka B.P.)is enriched in As(31.8μg/g)due to significant provenance contributions of the As-bearing Langshan Group under tectonic uplift and mountain erosion.In contrast,clay deposited in the middle Pleistocene(∼160 ka B.P.)has lower As content(7.3μg/g)due to the Yellow River as the primary provenance.Accordingly,the provenance of basin As forced by tectonic uplift and Yellow River evolution determines the background As of aquifer sediments.After deposition,sediment As content decays over time,with higher decay rates in coarse-grained sands than fine-grained.Overall,both provenance formation and sediment age,representing initial and dynamic states of solid phase As,jointly determine the As content of aquifer sediments.More solid phase As provided by younger sediments from the proximal orogenic provenance and reducing conditions due to frequent river-lake transitions,jointly lead to higher As concentrations in shallow groundwater.The study highlights the potential for using a combined analysis of the tectonic movement-surface processes-environment system to improve understanding of geogenic high As groundwater over global large sedimentary basins in the proximity of young orogenic belts.
基金This work was financially supported by the Regional Geological Research Program of Geological Survey of China(12120113057600)the Croucher Chinese Visitorships from Croucher Foundation(2020-2021).
文摘The tectonic evolution and history of continental accretion of the eastern Central Asian Orogenic Belt(CAOB)are not yet fully understood.In this study,we investigate Permian intrusive rocks from the Jiamusi Block of the eastern CAOB to constrain the tectonic evolution and continental accretion of this region during the late-stage evolution of the Paleo-Asian Ocean.Our new data show that Early Permian gabbro-diorites were derived from the partial melting of depleted mantle metasomatized by oceanic-slab-released fluids.Middle Permian adakitic granites have low Na2O and MgO and high K2O contents,indicating a thickened-lower-crust source.Late Permian S-type granites were derived from the partial melting of continental crust.A compilation of the available geochronological data for Permian intrusive rocks(including adakitic and A-,S-,and I-type granites and mafic rocks)from the eastern CAOB reveals that the A-type granites formed mainly during the Early–Middle Permian,S-type and adakitic granites mostly during the Middle–Late Permian,and I-type granites and mantle-derived mafic rocks throughout the Permian.The A-type granites,which are proposed to have been sourced from thinned continental crust,indicate an extensional setting in the eastern CAOB during the Early Permian.The Middle–Late Permian adakitic granites imply a thickened continental crust,which indicates a compressional setting.Therefore,the eastern CAOB underwent a transition from extension to compression during the Middle Permian,which was probably triggered by the late-stage subduction of Paleo-Asian oceanic crust.Considering the petrogenesis of the intrusive rocks and inferred regional tectonic evolution of the eastern CAOB,we propose that vertical underplating of mantle-and oceanic-slabderived magmas contributed the materials for continental crust accretion.