期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mechanism of internal thermal runaway propagation in blade batteries 被引量:3
1
作者 xuning Feng Fangshu Zhang +3 位作者 Wensheng Huang Yong Peng chengshan xu Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期184-194,I0005,共12页
Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propaga... Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design. 展开更多
关键词 Lithium-ion battery Blade battery Thermal runaway Internal thermal runaway propagation
下载PDF
Thermal safety boundary of lithium-ion battery at different state of charge 被引量:1
2
作者 Hang Wu Siqi Chen +8 位作者 Yan Hong chengshan xu Yuejiu Zheng Changyong Jin Kaixin Chen Yafei He xuning Feng xuezhe Wei Haifeng Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期59-72,共14页
Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charg... Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems. 展开更多
关键词 Lithium-ion battery Battery safety Thermal runaway State of charge Numerical analysis
下载PDF
Thermal runaway propagation behavior of the Cell-to-Pack battery system 被引量:3
3
作者 Huaibin Wang Qinzheng Wang +9 位作者 Zhenyang Zhao Changyong Jin chengshan xu Wensheng Huang Zhuchen Yuan Shuyu Wang Yang Li Yanhong Zhao Junli Sun xuning Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期162-172,共11页
Structurally compact battery packs significantly improve the driving range of electric vehicles.Technologies like Cell-to-Pack increase energy density by 15%-20%.However,the safety implications of multiple tightly-pac... Structurally compact battery packs significantly improve the driving range of electric vehicles.Technologies like Cell-to-Pack increase energy density by 15%-20%.However,the safety implications of multiple tightly-packed battery cells still require in-depth research.This paper studies thermal runaway propagation behavior in a Cell-to-Pack system and assesses propagation speed relative to other systems.The investigation includes temperature response,extent of battery damage,pack structure deformation,chemical analysis of debris,and other considerations.Results suggest three typical patterns for the thermal runaway propagation process:ordered,disordered,and synchronous.The synchronous propagation pattern displayed the most severe damage,indicating energy release is the largest under the synchronous pattern.This study identifies battery deformation patterns,chemical characteristics of debris,and other observed factors that can both be applied to identify the cause of thermal runaway during accident investigations and help promote safer designs of large battery packs used in large-scale electric energy storage systems. 展开更多
关键词 Energy storage Cell-to-Pack Lithium-ion battery Thermal runaway Battery safety
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部