The influence of Typhoon Kalmaegi on internal waves near the Dongsha Islands in the northeastern South China Sea was investigated using mooring observation data.We observed,for the first time,that the phenomenon of re...The influence of Typhoon Kalmaegi on internal waves near the Dongsha Islands in the northeastern South China Sea was investigated using mooring observation data.We observed,for the first time,that the phenomenon of regular variation characteristics of the 14-d spring-neap cycle of diurnal internal tides(ITs)can be regulated by typhoons.The diurnal ITs lost the regular variation characteristics of the 14-d spring-neap cycle during the typhoon period owing to the weakening of diurnal coherent ITs,represented by O_(1)and K_(1),and the strengthening of diurnal incoherent ITs.Results of quantitative analysis showed that during the pre-typhoon period,timeaveraged modal kinetic energy(sum of Modes 1–5)of near-inertial internal waves(NIWs)and diurnal and semidiurnal ITs were 0.62 kJ/m^(2),5.66 kJ/m^(2),and 1.48 kJ/m^(2),respectively.However,during the typhoon period,the modal kinetic energy of NIWs increased 5.11 times,mainly due to the increase in high-mode kinetic energy.At the same time,the modal kinetic energy of diurnal and semidiurnal ITs was reduced by 68.9%and 20%,respectively,mainly due to the decrease in low-mode kinetic energy.The significantly reduced diurnal ITs during the typhoon period could be due to:(1)strong nonlinear interaction between diurnal ITs and NIWs,and(2)a higher proportion of high-mode diurnal ITs during the typhoon period,leading to more energy dissipation.展开更多
Upper turbulent mixing in the interior and surrounding areas of an anticyclonic eddy in the northern South China Sea(SCS)was estimated from underwater glider data(May 2015)in the present study,using the Gregg-HenyeyPo...Upper turbulent mixing in the interior and surrounding areas of an anticyclonic eddy in the northern South China Sea(SCS)was estimated from underwater glider data(May 2015)in the present study,using the Gregg-HenyeyPolzin parameterization and the Thorpe-scale method.The observations revealed a clear asymmetrical spatial pattern of turbulent mixing in the anticyclonic eddy area.Enhanced diffusivity(in the order of 10–3 m2/s)was found at the posterior edge of the anticyclonic mesoscale eddy;on the anterior side,diffusivity was one order of magnitude lower on average.This asymmetrical pattern was highly correlated with the eddy kinetic energy.Higher shear variance on the posterior side,which is conducive to the triggering of shear instability,may be the main mechanism for the elevated diffusivity.In addition,the generation and growth of sub-mesoscale motions that are fed by mesoscale eddies on their posterior side may also promote the occurrence of strong mixing in the studied region.The results of this study help improve our knowledge regarding turbulent mixing in the northern SCS.展开更多
We present observations from deployments of turbulent microstructure instrument and CTD package in the northern South China Sea from April to May 2010.From them we determined the turbulent mixing(dissipation rateεand...We present observations from deployments of turbulent microstructure instrument and CTD package in the northern South China Sea from April to May 2010.From them we determined the turbulent mixing(dissipation rateεand diapycnal diffusivityκ),nutrients(phosphate,nitrate,and nitrite),nutrient fluxes,and chlorophyll a in two transects(A and B).Transect A was located in the region where turbulent mixing in the upper 100 m was weak(κ~10-6-10-4 m^(2)/s).Transect B was located in the region where the turbulent mixing in the upper 100 m was strong(κ~10-5-10-3 m^(2)/s)due to the influence of internal waves originating from the Luzon Strait and water intrusion from the Western Pacific.In both transects,there was a thin subsurface chlorophyll maximum layer(SCML)(>0.25 mg/m^(3))nested in the upper 100 m.The observations indicate that the effects of turbulent mixing on the distributions of nutrients and chlorophyll a were different in the two transects.In the transect A with weak turbulent mixing,nutrient fluxes induced by turbulent mixing transported nutrients to the SCML but not to the upper water.Nutrients were sufficient to support a local SCML phytoplankton population and the SCML remained compact.In the transect B with strong turbulent mixing,nutrient fluxes induced by turbulent mixing transported nutrients not only to the SCML but also to the upper water,which scatters the nutrients in the water column and diffuses the SCML.展开更多
基金The National Key Research and Development Program under contract No.2021YFC3101300the CAS Key Laboratory of Science and Technology on Operational Oceanography under contract No.OOST2021-07the fund supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2021SP102.
文摘The influence of Typhoon Kalmaegi on internal waves near the Dongsha Islands in the northeastern South China Sea was investigated using mooring observation data.We observed,for the first time,that the phenomenon of regular variation characteristics of the 14-d spring-neap cycle of diurnal internal tides(ITs)can be regulated by typhoons.The diurnal ITs lost the regular variation characteristics of the 14-d spring-neap cycle during the typhoon period owing to the weakening of diurnal coherent ITs,represented by O_(1)and K_(1),and the strengthening of diurnal incoherent ITs.Results of quantitative analysis showed that during the pre-typhoon period,timeaveraged modal kinetic energy(sum of Modes 1–5)of near-inertial internal waves(NIWs)and diurnal and semidiurnal ITs were 0.62 kJ/m^(2),5.66 kJ/m^(2),and 1.48 kJ/m^(2),respectively.However,during the typhoon period,the modal kinetic energy of NIWs increased 5.11 times,mainly due to the increase in high-mode kinetic energy.At the same time,the modal kinetic energy of diurnal and semidiurnal ITs was reduced by 68.9%and 20%,respectively,mainly due to the decrease in low-mode kinetic energy.The significantly reduced diurnal ITs during the typhoon period could be due to:(1)strong nonlinear interaction between diurnal ITs and NIWs,and(2)a higher proportion of high-mode diurnal ITs during the typhoon period,leading to more energy dissipation.
基金The National Key R&D Plan of China under contract Nos 2017YFC0305904,2017YFC0305804 and 2016YFC1401404the National Natural Science Foundation of China under contract Nos 41876023,41630970,41806037,41706137 and 41806033+4 种基金the Guangdong Science and Technology Project under contract Nos 2019A1515111044,2018A0303130047 and 2017A030310332the Guangzhou Science and Technology Project under contract No.201707020037the Natural Science Foundation of Shenzhen University under contract No.2019078the Dedicated Fund for Promoting High-quality Economic Development in Guangdong Province(Marine Economic Development Project)under contract No.GDOE2019A03the Independent Research Project Program of State Key Laboratory of Tropical Oceanography under contract Nos LTOZZ1902 and LTO1909。
文摘Upper turbulent mixing in the interior and surrounding areas of an anticyclonic eddy in the northern South China Sea(SCS)was estimated from underwater glider data(May 2015)in the present study,using the Gregg-HenyeyPolzin parameterization and the Thorpe-scale method.The observations revealed a clear asymmetrical spatial pattern of turbulent mixing in the anticyclonic eddy area.Enhanced diffusivity(in the order of 10–3 m2/s)was found at the posterior edge of the anticyclonic mesoscale eddy;on the anterior side,diffusivity was one order of magnitude lower on average.This asymmetrical pattern was highly correlated with the eddy kinetic energy.Higher shear variance on the posterior side,which is conducive to the triggering of shear instability,may be the main mechanism for the elevated diffusivity.In addition,the generation and growth of sub-mesoscale motions that are fed by mesoscale eddies on their posterior side may also promote the occurrence of strong mixing in the studied region.The results of this study help improve our knowledge regarding turbulent mixing in the northern SCS.
基金Supported by the National Key R&D Program of China(No.2018YFA0902500)the National Natural Science Foundation of China(Nos.41706137,41806033,41876023)+5 种基金the Natural Science Foundation of Guangdong Province of China(No.2017A030310332)the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(No.LTO1909)the Natural Science Foundation of SZU(Nos.2019078,860-000002110258)the Dedicated Fund for Promoting High-quality Economic Development in Guangdong Province(Marine Economic Development Project)(No.GDOE[2019]A03)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0304)the Independent Research Project Program of State Key Laboratory of Tropical Oceanography(No.LTOZZ1902)。
文摘We present observations from deployments of turbulent microstructure instrument and CTD package in the northern South China Sea from April to May 2010.From them we determined the turbulent mixing(dissipation rateεand diapycnal diffusivityκ),nutrients(phosphate,nitrate,and nitrite),nutrient fluxes,and chlorophyll a in two transects(A and B).Transect A was located in the region where turbulent mixing in the upper 100 m was weak(κ~10-6-10-4 m^(2)/s).Transect B was located in the region where the turbulent mixing in the upper 100 m was strong(κ~10-5-10-3 m^(2)/s)due to the influence of internal waves originating from the Luzon Strait and water intrusion from the Western Pacific.In both transects,there was a thin subsurface chlorophyll maximum layer(SCML)(>0.25 mg/m^(3))nested in the upper 100 m.The observations indicate that the effects of turbulent mixing on the distributions of nutrients and chlorophyll a were different in the two transects.In the transect A with weak turbulent mixing,nutrient fluxes induced by turbulent mixing transported nutrients to the SCML but not to the upper water.Nutrients were sufficient to support a local SCML phytoplankton population and the SCML remained compact.In the transect B with strong turbulent mixing,nutrient fluxes induced by turbulent mixing transported nutrients not only to the SCML but also to the upper water,which scatters the nutrients in the water column and diffuses the SCML.