期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Machinability ofγ-TiAl:A review 被引量:2
1
作者 Ziwen XIA chenwei shan +2 位作者 Menghua ZHANG Minchao CUI Ming LUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期40-75,共36页
Owing to its outstanding mechanical properties,γ-TiAl is desirable materials for crossgeneration aero-engines.Nearly 70 years of exploration have made it into the initial application.However,the intrinsic brittleness... Owing to its outstanding mechanical properties,γ-TiAl is desirable materials for crossgeneration aero-engines.Nearly 70 years of exploration have made it into the initial application.However,the intrinsic brittleness ofγ-TiAl is still a critical obstacle to its large-scale applications.In this context,researchers have made many attempts to study the machinability ofγ-TiAl.At present,existing relevant reviews have mostly discussed the processing methods ofγ-TiAl.Hence,there is still a lack of a perspective on material properties to analyze the cutting mechanism.Herein,this paper provides the systematic review of such perspectives.Above all,the developmental process,phase transformation,and microstructural evolution ofγ-TiAl are discussed,as well as its deformation mechanism at quasi-static.These topics can provide a materials science foundation for the machining ofγ-TiAl.And then,the review focuses on the cutting mechanism and surface integrity ofγ-TiAl.Moreover,special attention is paid to the microscope deformation mechanism and surface defects evolution ofγ-TiAl during cutting.Finally,the review indicates that the highperformance machining technology ofγ-TiAl faces challenges and proposes potential future research directions.Solving the difficulties during machiningγ-TiAl aero-engine components will accelerate the development of new aero-engines. 展开更多
关键词 Cutting mechanism DEFORMATION MACHINABILITY Surface integrity Γ-TIAL
原文传递
Hail impact responses and residual tensile properties of CFRP T-joints
2
作者 Jianwu ZHOU Zhibin ZHAO +3 位作者 Yaoyao SHI Xu WANG Xiaopeng CHEN chenwei shan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期430-443,共14页
Hail impact is a major challenge encountered by aircraft in flight,and thus is a key concern in the design of damage-tolerant composite T-joints in aviation.The study uses the Z-pinning technique(the pre-hole insertio... Hail impact is a major challenge encountered by aircraft in flight,and thus is a key concern in the design of damage-tolerant composite T-joints in aviation.The study uses the Z-pinning technique(the pre-hole insertion technology)in combination with fillets of two radiuses to manufacture four types of Carbon Fiber Reinforced Polymers(CFRP)T-joints.The T-joints are then subjected to hail impact tests at two energy levels,as well as post-impact quasi-static tensile tests.The results show that increasing the size of the deltoid and Z-pin-induced reinforcement has a limited influence on the responses of the T-joints to hail impact,but a significant influence on their residual tensile strength after impact.These influences are not only dependent on the structural characteristics of the T-joints,but are also closely related to the degree of discrete damage within the T-joints caused by hail impact.Acoustic Emission(AE)technology is used to monitor the quantitative evolution of damage to the T-joints in a timely manner during the loading process,and helps characterize the characteristics of evolution of various types of damage over different periods.The research here can help design lightweight and damage-tolerant T-joints. 展开更多
关键词 Acoustic emission CFRP T-joint DELTOID Hail impact Z-PIN
原文传递
An improved analytical model of cutting temperature in orthogonal cutting of Ti6Al4V 被引量:10
3
作者 chenwei shan Xu ZHANG +1 位作者 Bin SHEN Dinghua ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第3期759-769,共11页
Cutting heat has significant effects on the machined surface integrity of titanium alloys in the aerospace field. Many unwanted problems such as surface burning, work hardening, and tool wear can be induced by high cu... Cutting heat has significant effects on the machined surface integrity of titanium alloys in the aerospace field. Many unwanted problems such as surface burning, work hardening, and tool wear can be induced by high cutting temperatures. Therefore, it is necessary to accurately predict the cutting temperature of titanium alloys. In this paper, an improved analytical model of the cutting temperature in orthogonal cutting of titanium alloys is proposed based on the Komanduri-Hou model and the Huang-Liang model. The temperatures at points in a cutting tool, chip, and workpiece are calculated by using the moving heat source method. The tool relief angle is introduced into the proposed model, and imaginary mirrored heat sources of the shear plane heat source and the frictional heat source are applied to calculate the temperature rise in a semi-infinite medium. The heat partition ratio along the tool-chip interface is determined by the discretization method. For validation purpose, orthogonal cutting of titanium alloy Ti6Al4V is performed on a lathe by using a sharp tool. Experimental results show to be consistent well with those of the proposed model,yielding a relative difference of predicted temperature from 0.49% to 9.00%. The model demonstrates its ability of predicting cutting temperature in orthogonal cutting of Ti6Al4V. 展开更多
关键词 CUTTING temperature MOVING heat source method ORTHOGONAL CUTTING RELIEF angle TITANIUM alloy
原文传递
Investigation on surface roughness,residual stress and fatigue property of milling in-situ TiB_2/7050Al metal matrix composites 被引量:6
4
作者 Yifeng XIONG Wenhu WANG +4 位作者 Yaoyao SHI Ruisong JIANG chenwei shan Xiaofen LIU Kunyang LIN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期451-464,共14页
For higher efficiency and precision manufacturing,more and more attentions are focused on the surface roughness and residual stress of machined parts to obtain a good fatigue life.At present,the in-situ TiB_2/7050 Al ... For higher efficiency and precision manufacturing,more and more attentions are focused on the surface roughness and residual stress of machined parts to obtain a good fatigue life.At present,the in-situ TiB_2/7050 Al metal matrix composites are widely researched due to its attractive properties such as low density,good wear resistance and improved strength.It is of great significance to investigate the machined surface roughness,residual stress and fatigue life for higher efficiency and precision manufacturing of this new kind material.In this study,the surface roughness including two-dimensional and three-dimensional roughness,residual stress and fatigue life of milling in-situ TiB_2/7050 Al metal matrix composites were analyzed.It was found from comparative investigation that the three-dimensional surface roughness would be more appropriate to represent the machined surface profile of milling particle reinforced metal matrix composites.The cutting temperature played a great role on the residual stress.However,the effect of increasing cutting force could slow down the transformation from compressive stress to tensile stress under 270°C.An exponential relationship between three-dimensional roughness and fatigue life was established and the main fracture mechanism was brittle fracture with observation of obvious shellfish veins,river pattern veins and wave shaped veins in fracture surface. 展开更多
关键词 Fatigue life Metal matrix composite Residual stress Three-dimensional surface roughness TiB_2 particle Two-dimensional surface roughness
原文传递
Analytical model of cutting force in axial ultrasonic vibration-assisted milling in-situ TiB_(2)/7050Al PRMMCs 被引量:1
5
作者 Xiaofen LIU Wenhu WANG +4 位作者 Ruisong JIANG Yifeng XIONG Kunyang LIN Junchen LI chenwei shan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期160-173,共14页
Ultrasonic vibration-assisted milling has been widely applied in machining the difficultto-cut materials owing to the remarkable improvements in reducing the cutting force.However,analytical models to reveal the mecha... Ultrasonic vibration-assisted milling has been widely applied in machining the difficultto-cut materials owing to the remarkable improvements in reducing the cutting force.However,analytical models to reveal the mechanism and predict the cutting force of ultrasonic vibrationassisted milling metal matrix composites are still needed to be developed.In this paper,an analytical model of cutting force was established for ultrasonic vibration-assisted milling in-situ TiB_(2)/7050 Al metal matrix composites.During modeling,change of motion of the cutting tool,contact of toolchip-workpiece and acceleration of the chip caused by ultrasonic vibration was considered based on equivalent oblique cutting model.Meanwhile,material properties,tool geometry,cutting parameters and vibration parameters were taken into consideration.Furthermore,the developed analytical force model was validated with and without ultrasonic vibration milling experiments on in-situ TiB_(2)/7050 Al metal matrix composites.The predicted cutting forces show to be consistent well with the measured cutting forces.Besides,the relative error of instantaneous maximum forces between the predicted and measured data is from 0.4%to 15.1%.The analytical model is significant for cutting force prediction not only in ultrasonic-vibration assisted milling but also in conventional milling in-situ TiB_(2)/7050 Al metal matrix composites,which was proved with general applicability. 展开更多
关键词 Al-MMCs Analytical model Cutting force IN-SITU MILLING TiB_(2)particles Ultrasonic vibration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部