Historical evidence indicates that dust storms of considerable ferocity often wreak havoc, posing a genuine threat to the climatic and societal equilibrium of a place. A systematic study, with emphasis on the modeling...Historical evidence indicates that dust storms of considerable ferocity often wreak havoc, posing a genuine threat to the climatic and societal equilibrium of a place. A systematic study, with emphasis on the modeling and forecasting aspects, thus, becomes imperative, so that efficient measures can be promptly undertaken to cushion the effect of such an unforeseen calamity. The present work intends to discover a suitable ARIMA model using dust storm data from northern China from March 1954 to April 2002, provided by Zhou and Zhang (2003), thereby extending the idea of empirical recurrence rate (ERR) developed by Ho (2008), to model the temporal trend of such sand dust storms. In particular we show that the ERR time series is endowed with the following characteristics: 1) it is a potent surrogate for a point process, 2) it is capable of taking advantage of the well developed and powerful time series modeling tools and 3) it can generate reliable forecasts, with which we can retrieve the corresponding mean number of strong sand dust storms. A simulation study is conducted prior to the actual fitting, to justify the applicability of the proposed technique.展开更多
Micro-light-emitting diodes(μ-LEDs)are regarded as the cornerstone of next-generation display technology to meet the personalised demands of advanced applications,such as mobile phones,wearable watches,virtual/augmen...Micro-light-emitting diodes(μ-LEDs)are regarded as the cornerstone of next-generation display technology to meet the personalised demands of advanced applications,such as mobile phones,wearable watches,virtual/augmented reality,micro-projectors and ultrahigh-definition TVs.However,as the LED chip size shrinks to below 20μm,conventional phosphor colour conversion cannot present sufficient luminance and yield to support highresolution displays due to the low absorption cross-section.The emergence of quantum dot(QD)materials is expected to fill this gap due to their remarkable photoluminescence,narrow bandwidth emission,colour tuneability,high quantum yield and nanoscale size,providing a powerful full-colour solution for μ-LED displays.Here,we comprehensively review the latest progress concerning the implementation of μ-LEDs and QDs in display technology,including μ-LED design and fabrication,large-scale μ-LED transfer and QD full-colour strategy.Outlooks on QD stability,patterning and deposition and challenges of μ-LED displays are also provided.Finally,we discuss the advanced applications of QD-based μ-LED displays,showing the bright future of this technology.展开更多
文摘Historical evidence indicates that dust storms of considerable ferocity often wreak havoc, posing a genuine threat to the climatic and societal equilibrium of a place. A systematic study, with emphasis on the modeling and forecasting aspects, thus, becomes imperative, so that efficient measures can be promptly undertaken to cushion the effect of such an unforeseen calamity. The present work intends to discover a suitable ARIMA model using dust storm data from northern China from March 1954 to April 2002, provided by Zhou and Zhang (2003), thereby extending the idea of empirical recurrence rate (ERR) developed by Ho (2008), to model the temporal trend of such sand dust storms. In particular we show that the ERR time series is endowed with the following characteristics: 1) it is a potent surrogate for a point process, 2) it is capable of taking advantage of the well developed and powerful time series modeling tools and 3) it can generate reliable forecasts, with which we can retrieve the corresponding mean number of strong sand dust storms. A simulation study is conducted prior to the actual fitting, to justify the applicability of the proposed technique.
基金the financial support of Shenzhen Peacock Team funding(KQTD20170810110313773)financial support from the Australian Research Council(ARC)(DP190103316)+1 种基金financial support from the Taiwan science and technology authority,China(107-2221-E-009-113-MY3)financial support from the startup funding of City University of Hong Kong.
文摘Micro-light-emitting diodes(μ-LEDs)are regarded as the cornerstone of next-generation display technology to meet the personalised demands of advanced applications,such as mobile phones,wearable watches,virtual/augmented reality,micro-projectors and ultrahigh-definition TVs.However,as the LED chip size shrinks to below 20μm,conventional phosphor colour conversion cannot present sufficient luminance and yield to support highresolution displays due to the low absorption cross-section.The emergence of quantum dot(QD)materials is expected to fill this gap due to their remarkable photoluminescence,narrow bandwidth emission,colour tuneability,high quantum yield and nanoscale size,providing a powerful full-colour solution for μ-LED displays.Here,we comprehensively review the latest progress concerning the implementation of μ-LEDs and QDs in display technology,including μ-LED design and fabrication,large-scale μ-LED transfer and QD full-colour strategy.Outlooks on QD stability,patterning and deposition and challenges of μ-LED displays are also provided.Finally,we discuss the advanced applications of QD-based μ-LED displays,showing the bright future of this technology.