期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enhancing ammonia production rates from electrochemical nitrogen reduction by engineering three-phase boundary with phosphorus-activated Cu catalysts
1
作者 Jeehye Kim cho hee lee +5 位作者 Yong Hyun Moon Min hee lee Eun Hyup Kim Sun hee choi Youn Jeong Jang Jae Sung lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期394-401,共8页
Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to i... Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to its low solubility in aqueous electrolytes.Herein,we propose phosphorus-activated Cu electrocatalysts to generate electron-deficient Cu sites on the catalyst surface to promote the adsorption of N_(2) molecules.The eNRR system is further modified using a gas diffusion electrode(GDE) coated with polytetrafluoroethylene(PTFE) to form an effective three-phase boundary of liquid water-gas N_(2)-solid catalyst to facilitate easy access of N_(2) to the catalytic sites.As a result,the new catalyst in the flow-type cell records a Faradaic efficiency of 13.15% and an NH_(3) production rate of 7.69 μg h^(-1) cm^(-2) at-0.2 V_(RHE),which represent 3.56 and 59.2 times increases from those obtained with a pristine Cu electrode in a typical electrolytic cell.This work represents a successful demonstration of dual modification strategies;catalyst modification and N_(2) supplying system engineering,and the results would provide a useful platform for further developments of electrocatalysts and reaction systems. 展开更多
关键词 Electrochemical nitrogen reduction reaction Ammonia production Phosphorous modified copper electrodes Gas diffusion electrodes Three-phase boundary PTFE coating
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部