Inspired by the concept of "polymer-in-ceramic",a composite poly(ε-caprolactone)(PCL)/ceramic containing LiTFSI is prepared and investigated as a solid electrolyte for all-solid-state batteries.The composit...Inspired by the concept of "polymer-in-ceramic",a composite poly(ε-caprolactone)(PCL)/ceramic containing LiTFSI is prepared and investigated as a solid electrolyte for all-solid-state batteries.The composite with the optimum concentration of 45 wt% LiTFSI and 75 wt% Li1.5Al0.5Ge1.5(PO4)3(LAGP,NASICON-type structure) exhibits a high ionic conductivity(σi=0.17 mS cm-1) at 30℃,a transference number of 0.30,and is stable up to 5.0 V.The composite electrolyte is a flexible and self-standing membrane.Solid-state LiFePO4//Li batteries with this composite electrolyte demonstrate excellent cycling stability with high discharge capacity of 157 mA h g-1,high capacity retention of 96% and coulombic efficiency of 98.5% after 130 cycles at 30℃ and 0.1 C rate.These electrochemical properties are better than other PCL-based allsolid-lithium batteries,and validate the concept of "polymer-in-ceramic" by avoiding the drawback of lower conductivity in prior "polymer-in-ceramic" electrolyte at high concentration of the ceramic.展开更多
LiFePO4 materials synthesized using FePO4(H2O)2 and Li2CO3 blend were optimized in view of their use as positive electrodes in Li-ion batteries for hybrid electric vehicles. A strict control of the structural properti...LiFePO4 materials synthesized using FePO4(H2O)2 and Li2CO3 blend were optimized in view of their use as positive electrodes in Li-ion batteries for hybrid electric vehicles. A strict control of the structural properties was made by the combination of X-ray diffraction, FT-infrared spectroscopy and magnetometry. The impact of the ferromagnetic clus-ters (γ-Fe2O3 or Fe2P) on the electrochemical response was examined. The electrochemical performances of the opti-mized LiFePO4 powders investigated at 60℃ are excellent in terms of capacity retention (153 mAh·g-1 at 2C) as well as in terms of cycling life. No iron dissolution was observed after 200 charge-discharge cycles at 60℃ for cells containing Li foil, Li4Ti5O12, or graphite as negative electrodes.展开更多
基金supported by the National Key R&D Program of China (2016YFB0100500)Special fund of key technology research and development projects (20180201097GX) (20180201099GX) (20180201096GX) (20190302130GX)+1 种基金Jilin province science and technology department. The R&D Program of power batteries with low temperature and high energy, Science and Technology Bureau of Changchun (19SS013)Key Subject Construction of Physical Chemistry of Northeast Normal University。
文摘Inspired by the concept of "polymer-in-ceramic",a composite poly(ε-caprolactone)(PCL)/ceramic containing LiTFSI is prepared and investigated as a solid electrolyte for all-solid-state batteries.The composite with the optimum concentration of 45 wt% LiTFSI and 75 wt% Li1.5Al0.5Ge1.5(PO4)3(LAGP,NASICON-type structure) exhibits a high ionic conductivity(σi=0.17 mS cm-1) at 30℃,a transference number of 0.30,and is stable up to 5.0 V.The composite electrolyte is a flexible and self-standing membrane.Solid-state LiFePO4//Li batteries with this composite electrolyte demonstrate excellent cycling stability with high discharge capacity of 157 mA h g-1,high capacity retention of 96% and coulombic efficiency of 98.5% after 130 cycles at 30℃ and 0.1 C rate.These electrochemical properties are better than other PCL-based allsolid-lithium batteries,and validate the concept of "polymer-in-ceramic" by avoiding the drawback of lower conductivity in prior "polymer-in-ceramic" electrolyte at high concentration of the ceramic.
文摘LiFePO4 materials synthesized using FePO4(H2O)2 and Li2CO3 blend were optimized in view of their use as positive electrodes in Li-ion batteries for hybrid electric vehicles. A strict control of the structural properties was made by the combination of X-ray diffraction, FT-infrared spectroscopy and magnetometry. The impact of the ferromagnetic clus-ters (γ-Fe2O3 or Fe2P) on the electrochemical response was examined. The electrochemical performances of the opti-mized LiFePO4 powders investigated at 60℃ are excellent in terms of capacity retention (153 mAh·g-1 at 2C) as well as in terms of cycling life. No iron dissolution was observed after 200 charge-discharge cycles at 60℃ for cells containing Li foil, Li4Ti5O12, or graphite as negative electrodes.