We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the...We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the original method,i.e.,it is based on a wave decomposition at grid cell interfaces,it can be used to approximate hyperbolic problems in divergence form as well as in quasilinear form and limiting is introduced in the form of a wave limiter.展开更多
The goal of this paper is to present a numerical method for the Smoluchowski equation,a drift-diffusion equation on the sphere,arising in the modelling of particle dynamics.The numerical method uses radial basis funct...The goal of this paper is to present a numerical method for the Smoluchowski equation,a drift-diffusion equation on the sphere,arising in the modelling of particle dynamics.The numerical method uses radial basis functions(RBF).This is a relatively new approach,which has recently mainly been used for geophysical applications.For a simplified model problem we compare the RBF approach with a spectral method,i.e.the standard approach used in related physical applications.This comparison as well as our other accuracy studies show that RBF methods are an attractive alternative for these kind of models.展开更多
基金This work was supported by the DFG through HE 4858/4-1
文摘We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the original method,i.e.,it is based on a wave decomposition at grid cell interfaces,it can be used to approximate hyperbolic problems in divergence form as well as in quasilinear form and limiting is introduced in the form of a wave limiter.
文摘The goal of this paper is to present a numerical method for the Smoluchowski equation,a drift-diffusion equation on the sphere,arising in the modelling of particle dynamics.The numerical method uses radial basis functions(RBF).This is a relatively new approach,which has recently mainly been used for geophysical applications.For a simplified model problem we compare the RBF approach with a spectral method,i.e.the standard approach used in related physical applications.This comparison as well as our other accuracy studies show that RBF methods are an attractive alternative for these kind of models.