期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
LIMIT CYCLES OF SOME Z_3-EQUIVARIANT NEAR-HAMILTONIAN SYSTEMS OF DEGREES 3 AND 4
1
作者 christoph lhotka 《Annals of Differential Equations》 2009年第2期170-178,共9页
This paper studies the number of limit cycles of some Z3-equivariant near-Hamiltonian systems of degrees 3 and 4,which are a perturbation of a cubic Hamiltonian system. By the Melnikov function method,we obtain 5 and ... This paper studies the number of limit cycles of some Z3-equivariant near-Hamiltonian systems of degrees 3 and 4,which are a perturbation of a cubic Hamiltonian system. By the Melnikov function method,we obtain 5 and 6 limit cycles respectively. 展开更多
关键词 limit cycles Z3-equivariance near-Hamiltonian systems Melnikov function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部