Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous ...Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous lithiation strategy combining the advantages of yttrium doping and LiYO_(2) surface coating is proposed.Yttrium doping effectively suppresses the oxygen evolution during the delithiation process by increasing the energy barrier of oxygen evolution reaction through strong Y–O bond energy.LiYO_(2) nanocoating has the function of structural constraint and protection,that protecting the lattice oxygen exposed to the surface,thus avoiding irreversible oxidation.As an Li^(+) conductor,LiYO_(2) nano-coating can provide a fast Li^(+) transfer channel,which enables the sample to have excellent rate performance.The synergistic effect of Y doping and nano-LiYO_(2) coating integration suppresses the oxygen release from the surface,accelerates the diffusion of Li^(+)from electrolyte to electrode and decreases the interfacial side reactions,enabling the lithium ion batteries to obtain good electrochemical performance.The lithium-ion full cell employing the Y-1 sample(cathode)and commercial graphite(anode)exhibit an excellent specific energy density of 442.9 Wh kg^(-1) at a current density of 0.1C,with very stable safety performance,which can be used in a wide temperature range(60 to-15℃)stable operation.This result illustrates a new integration strategy for advanced cathode materials to achieve high specific energy density.展开更多
Ti-Al-V-Zr quaternary titanium alloys were designed followingα-{[Al-Ti12](AlTi2)}17-n+β-{[Al-Ti12Zr2](V3)}n,where n=1-7(the number ofβunits),on the basis of the dual-cluster formula of popular Ti-6Al-4V alloy.Such ...Ti-Al-V-Zr quaternary titanium alloys were designed followingα-{[Al-Ti12](AlTi2)}17-n+β-{[Al-Ti12Zr2](V3)}n,where n=1-7(the number ofβunits),on the basis of the dual-cluster formula of popular Ti-6Al-4V alloy.Such an alloying strategy aims at strengthening the alloy via Zr and V co-alloying in theβ-Ti unit,based on the originalβformula[Al-Ti14](V2Ti)of Ti-6Al-4V alloy.The microstructures of the as-cast alloys by copper-mold suction-casting change from pureα(n=1)toα+α’martensite(n=7).When n is 6,Ti-5.6Al-6.8V-8.1Zr alloy reaches the highest ultimate tensile strength of 1,293 MPa and yield strength of 1,097 MPa,at the expense of a low elongation of 2%,mainly due to the presence of a large amount of acicularα’martensite.Its specific strength far exceeds that of Ti-6Al-4V alloy by 35%.展开更多
Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys ...Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys with Nb contents ranging from 0 to 6.96 wt.%were prepared by laser additive manufacturing to examine their formability,microstructure,and mechanical properties.For single-track cladding layers,the addition of Nb increased the surface roughness slightly and decreased the molten pool height to improve its spreadability.The alloy,Ti−5.96Al−1.94V−3.54Nb(wt.%),exhibited better geometrical accuracy than the other alloys because its molten pool height was consistent with the spread layer thickness of the powder.The microstructures of the bulk samples contained similar columnar β-phase grains,regardless of Nb content.These grains grew epitaxially from the Ti substrate along the deposition direction,with basket-weaveα-phase laths within the columnar grains.Theα-phase size increased with increasing Nb contents,but its uniformity decreased.Along the deposition direction,the Vickers hardness increased from the substrate to the surface.The Ti−5.96Al−1.94V−3.54Nb alloy exhibited the highest Vickers hardness regardless of deposition position because of the optimal matching relationship between theα-phase size and its content among the designed alloys.展开更多
In this study,α+βTi-Al-V-Mo-Nb alloys with the addition of multiple elements that are suitable for laser additive manufacturing(LAM)were designed according to a Ti-6Al-4V cluster formula.This formula can be expresse...In this study,α+βTi-Al-V-Mo-Nb alloys with the addition of multiple elements that are suitable for laser additive manufacturing(LAM)were designed according to a Ti-6Al-4V cluster formula.This formula can be expressed as 12[Al-Ti12](AlTi2)+5[Al-Ti14]((Mo,V,Nb)2Ti),in which Mo and Nb were added into the alloys partially instead of V to give alloys with nominal compositions of Ti-6.01Al-3.13V-1.43Nb,Ti-5.97Al-2.33V-2.93Mo,and Ti-5.97Al-2.33V-2.20Mo-0.71Nb(wt.%).The microstructures and mechanical properties of the as-deposited and heat-treated samples prepared via LAM were examined.The sizes of theβcolumnar grains andαlaths in the Nb-containing samples are found to be larger than those of the Ti-6Al-4V alloy,whereas Mo-or Mo/Nb-added alloys contain finer grains.It indicates that Nb gives rise to coarsenedβcolumnar grains andαlaths,while Mo significantly refines them.Furthermore,the single addition of Nb improves the elongation,whereas the single addition of Mo enhances the strength of the alloys.The simultaneous addition of Mo/Nb significantly improves the comprehensive mechanical properties of the alloys,leading to the best properties with an ultimate tensile strength of 1,070 MPa,a yield strength of 1,004 MPa,an elongation of 9%,and micro-hardness of 355 HV.The fracture modes of all the alloys are ductile-brittle mixed fracture.展开更多
The microstructure and hydrogen storage properties of low V content (Ti0.46Cr0.54)100-xVx (x = 2.5-7.1, at%) and (TiyCr1-y)95V5 (y= 0.38-0.54) alloys were investigated. These alloys were prepared by arc meltin...The microstructure and hydrogen storage properties of low V content (Ti0.46Cr0.54)100-xVx (x = 2.5-7.1, at%) and (TiyCr1-y)95V5 (y= 0.38-0.54) alloys were investigated. These alloys were prepared by arc melting and copper mould suction casting. The structures of as-cast (Ti0.46Cr0.54)100-xVx (x = 2.5, 5.0, and 7.1) alloy ingots evolve with V contents from pure Laves-(x = 2.5) to dual-phase TiCr2-BCC structures (5.0 and 7.1), whereas the suction-cast (Ti0.46Cr0.54)100-xVx (x =2.5, 5.0, and 7.1) alloys only contain single BCC phase. The suction-cast alloy rod (Ti0.46Cr0.54)95V5, containing only 5.0 at% V is shown to possess the optimum hydrogen absorption capacity, with the maximum hydrogen content of 3.14 wt%. Furthermore, the hydrogen storage properties of the suction-cast low V alloys (TiyCr1-y)95V5 (y = 0.38-0.54) are sensitive to Ti/Cr ratios and only those alloys with Ti/Cr ratios close to the CN14 cluster [TiTCrs] have good hydrogen storage properties.展开更多
An empirical formula for composition demixing analysis in cathodic arc ion plating using alloy target is established based on the concepts of average charged state and relative demixing parameter. The level of composi...An empirical formula for composition demixing analysis in cathodic arc ion plating using alloy target is established based on the concepts of average charged state and relative demixing parameter. The level of composition demixing effect is presented by demixing degree of one element. For binary constituent alloy target, the composition change trend in coating is discussed and the limit of demixing degree for each element is determined. The content of one element with higher average charged state gets larger in coating than in alloy target, at meantime, the content of one element with lower average charged state gets less. For each one of the two constituents, the less the atom percent in alloy target, the larger the difference of its contents between the coating and the target. For triple constituent alloy target, the content change of one element with moderate average charged state is discussed in detail. Its content in coating getting larger or less is determined by the combination result of the contents of the other two elements in alloy target. For a given content of the element with moderate average charged state in triple alloy target, the content deviation level of that element from coating to alloy target will be not larger than that using binary alloy target containing only that element and one of the two others. According to the wanted coating composition, the composition design of alloy target is easily deduced from the formula.展开更多
The formation of nanoporous Pd was studied by electro-chemical dealloying a rapidly-quenched Al70Pd17Fe13 quasicrystal alloy in dilute NaCl aqueous solution,and the electro-catalytic activity of the nanoporous Pd towa...The formation of nanoporous Pd was studied by electro-chemical dealloying a rapidly-quenched Al70Pd17Fe13 quasicrystal alloy in dilute NaCl aqueous solution,and the electro-catalytic activity of the nanoporous Pd towards methanol electro-oxidation was evaluated by cyclic voltammetry in 1 mol/L KOH solution.XRD and TEM analyses revealed that nano-decomposition of quasicrystal grains occurred in the initial stage of dealloying,and the fully dealloyed sample was composed of FCC-Pd phase.Scanning electron microscopy observation indicated that a maze-like nanoporous pattern was formed in the dealloyed sample,consisting of percolated pores of 5.20 nm in diameter in a skeleton of randomly-orientated Pd nano-ligaments with a uniform thickness of^5 nm.A retention of^12 at.%Al in the Pd nano-ligments was determined by energy dispersive X-ray spectroscopy(EDS).The nanoporous Pd demonstrated obvious electro-catalytic activity towards methanol electro-oxidation in alkaline environment.展开更多
A novel Ti-6.38Al-3.87V-2.43Mo alloy was designed with a cluster formula of 12[Al-Ti12](V0.75Mo0.25Ti2)+4[Al-Ti12](Al3)by replacing Ti with Mo/V on the basis of the Ti-Al congruent alloy.The effects of laser power and...A novel Ti-6.38Al-3.87V-2.43Mo alloy was designed with a cluster formula of 12[Al-Ti12](V0.75Mo0.25Ti2)+4[Al-Ti12](Al3)by replacing Ti with Mo/V on the basis of the Ti-Al congruent alloy.The effects of laser power and scanning speed on the molten pool size,surface roughness,relative density,microstructure,and micro-hardness of single-track and bulk Ti-6.38Al-3.87V-2.43Mo samples prepared via laser additive manufacturing(LAM)were investigated.The results show that processing parameters significantly affect the formability,microstructure,and micro-hardness of the alloy.With decreasing laser power from 1,900 W to 1,000 W,the relative density is decreased from 99.86%to 90.91%due to the increase of lack-of-fusion;however,with increasing scanning speed,the relative density does not change significantly,but exceeds 99%.In particular,Ti-6.38Al-3.87V-2.43Mo samples of single-track and bulk exhibit a good formability under an input laser power of 1,900 W and a scanning speed of 8 mm·s_(-1),and display the lowest surface roughness(Ra=13.33μm)and the highest relative density(99.86%).Besides,the microstructure of LAM Ti-6.38Al-3.87V-2.43Mo alloy coarsens with increasing laser power or decreasing scanning speed due to the greater input energy reducing the cooling rate.The coarsening of the microstructure decreases the microhardness of the alloy.展开更多
The present work is devoted to the development of Fe-(B-Si)-Zr amorphous alloys with high glass-forming ability and good magnetic properties. Using the cluster-plus-glue-atom model proposed for ideal amorphous struc...The present work is devoted to the development of Fe-(B-Si)-Zr amorphous alloys with high glass-forming ability and good magnetic properties. Using the cluster-plus-glue-atom model proposed for ideal amorphous structures, [FeFe11B3Si](Fe1-xZrx) was determined as the cluster formula of Fe-(B-Si)-Zr alloys. The glass formation and thermal stability of the serial alloys, namely, [FeFel^B3Si](Fel_xZrx) (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, and 1.0), were studied by the combination of copper mold casting, X-ray diffraction, and differential thermal analysis techniques. The maxima of glass-forming ability and thermal stability were found to occur at the compositions of [FeFe11B3Si] (Fe0.6Zr0.4) and [FeFe11B3Si](Fe0.5Zr0.5). The alloys can be cast into amorphous rods with 1.5 ram diameter, and upon reheating, the amorphous alloys exhibit a large undercooled liquid span of 37 K. The saturation magnetization of the [FeFe11B3Si](Fe0.5Zr0.5) amorphous alloy was measured to be 1.4 T.展开更多
The thermal stability and the kinetics of glass transition and crystallization for Zr75-xNi25Alx (x = 8-15) metallic glasses were investigated using differential scanning calorimetry (DSC) under continuous heating...The thermal stability and the kinetics of glass transition and crystallization for Zr75-xNi25Alx (x = 8-15) metallic glasses were investigated using differential scanning calorimetry (DSC) under continuous heating conditions. The apparent activation energy of glass transition rises monotonously with the A1 content increasing; the activation energy of crystallization increases with A1 changing from 8at% to 15at%, and then decreases with A1 further up to 24at%, which exhibits a good correlation to the thermal stability and the glass-forming ability (GFA). The Zr60Ni25A115 metallic glass with the largest supercooled liquid region and GFA possesses the highest activation energy of crystallization. The relation between the thermal stability, GFA and activation energy of crystallization was discussed in terms of the primary precipitated phases.展开更多
Orthogonal experiments are used to design the pulsed bias related parameters, including bias magnitude, duty cycle and pulse frequency, during arc ion deposition of TiN films on stainless steel substrates in the case ...Orthogonal experiments are used to design the pulsed bias related parameters, including bias magnitude, duty cycle and pulse frequency, during arc ion deposition of TiN films on stainless steel substrates in the case of samples placing normal to the plasma flux. The effect of these parameters on the amount and the size distribution of droplet-particles are investigated, and the results have provided sufficient evidence for the physical model, in which particles reduction is due to the case that the particles are negatively charged and repulsed from negative pulse electric field. The effect of sample configuration on amount and size distribution of the particles are analyzed. The results of the amount and size distribution of the particles are compared to those in the case of samples placing parallel to the plasma flux.展开更多
Superalloys feature multi-elements and complex elemental ranges,which makes the proper composition selection difficult.In fact,more strict composition standards generally apply in practical productions.The objective o...Superalloys feature multi-elements and complex elemental ranges,which makes the proper composition selection difficult.In fact,more strict composition standards generally apply in practical productions.The objective of this paper is to understand and eventually to renew the composition standard via example of the most common grade Inconel 718.We have recently shown that t he alloy chemistry originates from a nearest-neighbor cluster[center-shell]plus a few next-neighbor glue atoms,or expressed in cluster for-mula[center-shell](glue atoms).By grouping the elements into Ni=(Ni,Co,Cu,Fe),Cr=(Cr,Mn,Si,Mo),and Nb=(Nb,Al,Ti),it is found that the reported alloys fall within a narrow composition zone Ni_(11.0-13.0)-Cr_(3.5-4.5)-Nb_(1) confined by cluster formulas of 16 and 18 atoms.This composition zone is also expressed in terms of 288-atom supercluster formulas,Ni_(198-208)-Cr_(63-72)-Nb_(16-18),which leads to coordi-nated elemental variations in wt.%:69.0≤Ni+Co+Cu+Fe≤72.7;19.8≤Cr+Mn+1.7 Si+0.6 Mo≤22.8;8.7≤Nb+3.2 Al+1.9 Ti≤9.8.Within this composition zone,Ni_(206)-Cr_(65.5)-Nb_(16.5) is further pinpointed and validated by our own experiments to possess the optimal match of strength and plasticity both at room and at 923 K.展开更多
Mg-Gd-Y-Zr alloys with high strength fall within narrow composition range.The present paper explains their composition rule by establishing the cluster-plus-glue-atom unit of Gd-containing Mg solid solution with the a...Mg-Gd-Y-Zr alloys with high strength fall within narrow composition range.The present paper explains their composition rule by establishing the cluster-plus-glue-atom unit of Gd-containing Mg solid solution with the aid of Mg matrix and Mg_(5) Gd precipitate phase.First,based on the structural homologue between Gd-containing Mg solid solution and Mg_(5) Gd precipitate phase and in combination with our previously established method for calculating the glue atoms,[Gd-Mg_(12)]Mg_(5) is obtained as the chemical unit of Gd-containing Mg solid solution.Then,seven compositions are designed using different combinations of this unit and that of pure Mg[Mg-Mg_(12)Mg3.After a systematic experimental investigation on the microstructure and mechanical property evolutions as a function of the unit proportions,it is revealed that the Mg-10.1 Gd-3.3 Y-0.9 Zr alloy,being issued from equi-proportion mixing of the two units,shows the strongest tendency of precipitation and reaches the highest strength of 374 MPa after aging.The composition and strength of this alloy are quite close to GW103 K which is well recognized for its general mechanical performance in Mg-Gd-Y-Zr system.展开更多
The multi-component composition characteristics of high-temperature near-α Ti alloys were investigated in the present work by means of a cluster formula approach. The uniform cluster formula [CN12 cluster](glue atom)...The multi-component composition characteristics of high-temperature near-α Ti alloys were investigated in the present work by means of a cluster formula approach. The uniform cluster formula [CN12 cluster](glue atom)3 for the hexagonal close-packed α solid solution was first obtained based on the Friedel oscillation theory, with a total atom number in the formula of Z = 16. Then it was analyzed that the Z values in the cluster composition formulas of typical near-α Ti alloys are within the range of Z = 16.0016.30, being perfectly consistent with the ideal Z = 16. Based on it, a series of new alloys with Z = 16 and with Nb/Ta substitution for Mo in Ti1100 alloy were designed, suction-cast into φ 6 mm rods, and then heat-treated with solid solution and aging. It was found that the alloy with co-addition of Mo, Ta and Nb has a high strength and good ductility at both room and high temperatures. More importantly, the additions of Nb and Ta can contribute to the formation of continuous and compact Al2O3 scales, resulting in an obvious improvement of oxidation resistances at both 923 K and 1073 K. The effects of Mo, Ta and Nb on the oxidation behaviors of the designed alloys at 1073 K were further discussed.展开更多
Vacuum brazing of TiAl alloy to 40Cr steel sheets was conducted with newly developed CuTiNiZrV amorphous foils. It was found that a diffusion layer,filler metal and reaction layer existed in the brazed seam. The diffu...Vacuum brazing of TiAl alloy to 40Cr steel sheets was conducted with newly developed CuTiNiZrV amorphous foils. It was found that a diffusion layer,filler metal and reaction layer existed in the brazed seam. The diffusion layer in the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25(at.%) foil was flat and thin,containing Ti19Al6 and Ti2Cu intermetallic compounds; however,the diffusion layer brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil was uneven with bulges,consisting of essentially Ti-based solute solution. The foil with 12.5 at.% V showed inferior spreadability compared to that with 6.25 at.% V at brazing temperature. However,fracture happened along the diffusion layer with 6.25 at.% V foil due to the formation of brittle intermetallic phases,but the joints brazed with 12.5 at.% V foil failed through the TiAl substrate. These results show that designing amorphous alloy with less Ti and more V for brazing TiAl alloy to steel is appropriate.展开更多
Composition homogenization in solid solution is important for industrial alloys. In the present work, a solute homogenization model is proposed based on the chemical short-range-order tendency in Mg-Gd- based alloys. ...Composition homogenization in solid solution is important for industrial alloys. In the present work, a solute homogenization model is proposed based on the chemical short-range-order tendency in Mg-Gd- based alloys. After a calculation using the cluster-plus-glue-atom model, the stable Mg-Gd structural unit is derived, [Gd-Mg12 ]Mg6, where one solute Gd is nearest-neighbored with twelve Mg atoms to form the characteristic hcp cluster [Gd-Mg12 ] and this cluster is matched with six Mg glue atoms. Such a local unit is then mixed with [Mg-Mg12 ]Mg3, the stable unit for pure Mg. Assuming that the Gd-containing units are arranged in fcc- or bcc-like lattice points and the Mg units in their octahedral interstices, three proportions between the two units are obtained, 1:1, 2:3, and 1:3, which constitute three solute homogenization modes. The prevailing Mg-Gd-based alloys are consequently classified into three groups, respectively exemplified by GW103 K (Mg-10Gd-3Y-0.4Zr, wt%), GW83 K (Mg-SGd-3Y-0.4Zr), and GW63 K (Mg-6Gd- 3Y-0.4Zr). Mg-Gd-Y-Zr alloys were designed following the model (where Y and Zr were also added in substitution for Gd) and prepared by permanent-mould casting. According to their mechanical properties, the 1:3 alloy (Mg-5.9Gd-1.6Y-0.4Zr) shows the best comprehensive properties (ultimate tensile strength 305 MPa, yield strength 186 MPa, elongation 9.0%) in solution plus ageing state.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
The present work formulated a materials design approach,a cluster-formula-embedded machine learning(ML)model,to search for body-centered-cubic(BCC)β-Ti alloys with low Young’s modulus(E)in the Ti–Mo–Nb–Zr–Sn–Ta...The present work formulated a materials design approach,a cluster-formula-embedded machine learning(ML)model,to search for body-centered-cubic(BCC)β-Ti alloys with low Young’s modulus(E)in the Ti–Mo–Nb–Zr–Sn–Ta system.The characteristic parameters,including the Mo equivalence and the cluster-formula approach,are implemented into the ML to ensure the accuracy of prediction,in which the former parameter represents the BCC-βstructural stability,and the latter reflects the interactions among elements expressed with a composition formula.Both auxiliary gradient-boosting regression tree and genetic algorithm methods were adopted to deal with the optimization problem in the ML model.展开更多
It has been recently pointed out that the compositions of industrial alloys are originated from cluster-plus-glueatom structure units in solid solutions. Specifically for Ni-based superalloys, after properly grouping ...It has been recently pointed out that the compositions of industrial alloys are originated from cluster-plus-glueatom structure units in solid solutions. Specifically for Ni-based superalloys, after properly grouping the alloying elements into Al, Ni-like(Ni^-), γ'-forming Cr-like(Cr^-γ') and γ-forming Cr-like(Cr^-γ'), the optimal formula for single-crystal superalloys is established [Al–Ni^-12](AlCr^-γ0:5Cr^-γ1:5). The Co substitutions for Ni at the shell sites are conducted on the basis of the first-generation single-crystal superalloy AM3, formulated as [Al-Ni2-xCox](Al1Ti0.25Ta0.25Cr1W0.25Mo0.25), with x = 1.5, 1.75, 2 and 2.5(the corresponding weight percents of Co are 9.43, 11.0, 12.57 and 15.71, respectively). The900 ℃ long-term aging follows the Lifshitz–Slyozov–Wagner theory(LSW theory), and the Co content does not have noticeable influence on the coarsening rate of c0. The microstructure and creep behavior of the four(001) single-crystal alloys are investigated. The creep rupture lifetime is reduced as Co increases. The alloy with the lowest Co(9.43 Co) shows the longest lifetime of about 350 h at 1050 ℃/120 MPa, and all the samples show N-type rafting after creep tests.展开更多
Each conventional alloy has its own specific compositions but the compositional origin is largely unknown due to our insufficient understanding about chemical shortrange ordering in the alloy,in particular,in the soli...Each conventional alloy has its own specific compositions but the compositional origin is largely unknown due to our insufficient understanding about chemical shortrange ordering in the alloy,in particular,in the solid-solution state.In the present paper,the compositions of metallic alloys are discussed and formulated,by unveiling the basic moleculelike structural units in solid solutions.Friedel oscillation theory,which describes the partial charge screening behavior in solid solutions,and henceforth the origin of short-range ordering,is applied to pin down the ideal chemical compositions of conventional metallic alloys.We propose that,at a specific composition,atoms self-assemble into an ideally ordered structure consisting of atoms residing in the nearestneighbor shell(denoted as cluster)plus those in the next outer shell(denoted as glue atoms),which can be formulated as[cluster](glue atoms).This simplified version of short-rangeorder structure represents the smallest charge-neutral and mean-density zone(termed as“chemical units”)and can be regarded as the‘molecules’of solid solutions.Accordingly,the chemical units and the corresponding molecule-like formulas for face-centered-cubic(FCC),hexagonal close-packed(HCP),and body-centered cubic(BCC)structures are analyzed and equations are obtained to identify the chemical formulas for FCC solid solutions.For instance,well-knownα-brass Cu-30 Zn alloy is formulated as[Zn-Cu_(12)]Zn4.Examples of aluminum alloys,superalloys and stainless steels are also illustrated,demonstrating the versatility of the present model to interpret chemically complex alloys.展开更多
Dissimilar metal joining of Ti-6AI-4V (TC4) titanium alloy to as-rolled 40Cr steel rods was conducted with friction welding, and the effect of post-weld heat treatment (PWHT) on the microstructure and mechanical p...Dissimilar metal joining of Ti-6AI-4V (TC4) titanium alloy to as-rolled 40Cr steel rods was conducted with friction welding, and the effect of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of the resultant joints was investigated. The average tensile strength of the as-welded joints reached 766 MPa and failure occurred in 40Cr steel base metal. However, after PWHT at 600℃ for 0.5, 1, 2 and 3 h, the tensile strength of the joints decreased and fracture happened through the interface with quasi-cleavage features. The bending angle of specimens was improved from 9.6° in as-welded state to 32.5° after PWHT for 2 h. The tensile strength of the joint was enhanced by martensitic transformation near the interface in as-welded state. Sorbite formed near the interface in PWHT state and improved the bending ductility of the joint. TiC brittle phase formed at the interface after PWHT for 0.5 h and deteriorated the tensile strength and bending ductility of the joint. After PWHT for 2 h, no TiC phase was detected at the interface. The microhardness on the interface in as-welded state was higher than that after PWHT, indicating that the decrease of microhardness around the interface could be accompanied by degradation of tensile strength but improvement of bending ductility of the joints.展开更多
基金This work was supported by the Fundamental Research Funds for the Central Universities(DUT20LAB123 and DUT20LAB307)the Natural Science Foundation of Jiangsu Province(BK20191167).
文摘Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous lithiation strategy combining the advantages of yttrium doping and LiYO_(2) surface coating is proposed.Yttrium doping effectively suppresses the oxygen evolution during the delithiation process by increasing the energy barrier of oxygen evolution reaction through strong Y–O bond energy.LiYO_(2) nanocoating has the function of structural constraint and protection,that protecting the lattice oxygen exposed to the surface,thus avoiding irreversible oxidation.As an Li^(+) conductor,LiYO_(2) nano-coating can provide a fast Li^(+) transfer channel,which enables the sample to have excellent rate performance.The synergistic effect of Y doping and nano-LiYO_(2) coating integration suppresses the oxygen release from the surface,accelerates the diffusion of Li^(+)from electrolyte to electrode and decreases the interfacial side reactions,enabling the lithium ion batteries to obtain good electrochemical performance.The lithium-ion full cell employing the Y-1 sample(cathode)and commercial graphite(anode)exhibit an excellent specific energy density of 442.9 Wh kg^(-1) at a current density of 0.1C,with very stable safety performance,which can be used in a wide temperature range(60 to-15℃)stable operation.This result illustrates a new integration strategy for advanced cathode materials to achieve high specific energy density.
基金financially supported by the Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation(Grant No.2020JJ25CY004)the National Basic Research Program of China(Grant No.2020JCJQZD165)。
文摘Ti-Al-V-Zr quaternary titanium alloys were designed followingα-{[Al-Ti12](AlTi2)}17-n+β-{[Al-Ti12Zr2](V3)}n,where n=1-7(the number ofβunits),on the basis of the dual-cluster formula of popular Ti-6Al-4V alloy.Such an alloying strategy aims at strengthening the alloy via Zr and V co-alloying in theβ-Ti unit,based on the originalβformula[Al-Ti14](V2Ti)of Ti-6Al-4V alloy.The microstructures of the as-cast alloys by copper-mold suction-casting change from pureα(n=1)toα+α’martensite(n=7).When n is 6,Ti-5.6Al-6.8V-8.1Zr alloy reaches the highest ultimate tensile strength of 1,293 MPa and yield strength of 1,097 MPa,at the expense of a low elongation of 2%,mainly due to the presence of a large amount of acicularα’martensite.Its specific strength far exceeds that of Ti-6Al-4V alloy by 35%.
基金the National Key Research and Development Program of China(No.2016YFB1100103)。
文摘Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys with Nb contents ranging from 0 to 6.96 wt.%were prepared by laser additive manufacturing to examine their formability,microstructure,and mechanical properties.For single-track cladding layers,the addition of Nb increased the surface roughness slightly and decreased the molten pool height to improve its spreadability.The alloy,Ti−5.96Al−1.94V−3.54Nb(wt.%),exhibited better geometrical accuracy than the other alloys because its molten pool height was consistent with the spread layer thickness of the powder.The microstructures of the bulk samples contained similar columnar β-phase grains,regardless of Nb content.These grains grew epitaxially from the Ti substrate along the deposition direction,with basket-weaveα-phase laths within the columnar grains.Theα-phase size increased with increasing Nb contents,but its uniformity decreased.Along the deposition direction,the Vickers hardness increased from the substrate to the surface.The Ti−5.96Al−1.94V−3.54Nb alloy exhibited the highest Vickers hardness regardless of deposition position because of the optimal matching relationship between theα-phase size and its content among the designed alloys.
基金the National Key Research and Development Program of China(No.2016YFB1100103)the Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation(No.2020JJ25CY004)。
文摘In this study,α+βTi-Al-V-Mo-Nb alloys with the addition of multiple elements that are suitable for laser additive manufacturing(LAM)were designed according to a Ti-6Al-4V cluster formula.This formula can be expressed as 12[Al-Ti12](AlTi2)+5[Al-Ti14]((Mo,V,Nb)2Ti),in which Mo and Nb were added into the alloys partially instead of V to give alloys with nominal compositions of Ti-6.01Al-3.13V-1.43Nb,Ti-5.97Al-2.33V-2.93Mo,and Ti-5.97Al-2.33V-2.20Mo-0.71Nb(wt.%).The microstructures and mechanical properties of the as-deposited and heat-treated samples prepared via LAM were examined.The sizes of theβcolumnar grains andαlaths in the Nb-containing samples are found to be larger than those of the Ti-6Al-4V alloy,whereas Mo-or Mo/Nb-added alloys contain finer grains.It indicates that Nb gives rise to coarsenedβcolumnar grains andαlaths,while Mo significantly refines them.Furthermore,the single addition of Nb improves the elongation,whereas the single addition of Mo enhances the strength of the alloys.The simultaneous addition of Mo/Nb significantly improves the comprehensive mechanical properties of the alloys,leading to the best properties with an ultimate tensile strength of 1,070 MPa,a yield strength of 1,004 MPa,an elongation of 9%,and micro-hardness of 355 HV.The fracture modes of all the alloys are ductile-brittle mixed fracture.
基金financially supported by the National Natural Science Foundation of China(Nos.51171035 and 11174044)
文摘The microstructure and hydrogen storage properties of low V content (Ti0.46Cr0.54)100-xVx (x = 2.5-7.1, at%) and (TiyCr1-y)95V5 (y= 0.38-0.54) alloys were investigated. These alloys were prepared by arc melting and copper mould suction casting. The structures of as-cast (Ti0.46Cr0.54)100-xVx (x = 2.5, 5.0, and 7.1) alloy ingots evolve with V contents from pure Laves-(x = 2.5) to dual-phase TiCr2-BCC structures (5.0 and 7.1), whereas the suction-cast (Ti0.46Cr0.54)100-xVx (x =2.5, 5.0, and 7.1) alloys only contain single BCC phase. The suction-cast alloy rod (Ti0.46Cr0.54)95V5, containing only 5.0 at% V is shown to possess the optimum hydrogen absorption capacity, with the maximum hydrogen content of 3.14 wt%. Furthermore, the hydrogen storage properties of the suction-cast low V alloys (TiyCr1-y)95V5 (y = 0.38-0.54) are sensitive to Ti/Cr ratios and only those alloys with Ti/Cr ratios close to the CN14 cluster [TiTCrs] have good hydrogen storage properties.
文摘An empirical formula for composition demixing analysis in cathodic arc ion plating using alloy target is established based on the concepts of average charged state and relative demixing parameter. The level of composition demixing effect is presented by demixing degree of one element. For binary constituent alloy target, the composition change trend in coating is discussed and the limit of demixing degree for each element is determined. The content of one element with higher average charged state gets larger in coating than in alloy target, at meantime, the content of one element with lower average charged state gets less. For each one of the two constituents, the less the atom percent in alloy target, the larger the difference of its contents between the coating and the target. For triple constituent alloy target, the content change of one element with moderate average charged state is discussed in detail. Its content in coating getting larger or less is determined by the combination result of the contents of the other two elements in alloy target. For a given content of the element with moderate average charged state in triple alloy target, the content deviation level of that element from coating to alloy target will be not larger than that using binary alloy target containing only that element and one of the two others. According to the wanted coating composition, the composition design of alloy target is easily deduced from the formula.
基金Foundation item:Project(51671045)supported by the National Natural Science Foundation of ChinaProject(DUT18GF112)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(TZ2016004)supported by the Science Challenge Project,China
文摘The formation of nanoporous Pd was studied by electro-chemical dealloying a rapidly-quenched Al70Pd17Fe13 quasicrystal alloy in dilute NaCl aqueous solution,and the electro-catalytic activity of the nanoporous Pd towards methanol electro-oxidation was evaluated by cyclic voltammetry in 1 mol/L KOH solution.XRD and TEM analyses revealed that nano-decomposition of quasicrystal grains occurred in the initial stage of dealloying,and the fully dealloyed sample was composed of FCC-Pd phase.Scanning electron microscopy observation indicated that a maze-like nanoporous pattern was formed in the dealloyed sample,consisting of percolated pores of 5.20 nm in diameter in a skeleton of randomly-orientated Pd nano-ligaments with a uniform thickness of^5 nm.A retention of^12 at.%Al in the Pd nano-ligments was determined by energy dispersive X-ray spectroscopy(EDS).The nanoporous Pd demonstrated obvious electro-catalytic activity towards methanol electro-oxidation in alkaline environment.
基金supported by the National Key Research and Development Program of China(No.2016YFB1100103)the Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation(No.2020JJ25CY004).
文摘A novel Ti-6.38Al-3.87V-2.43Mo alloy was designed with a cluster formula of 12[Al-Ti12](V0.75Mo0.25Ti2)+4[Al-Ti12](Al3)by replacing Ti with Mo/V on the basis of the Ti-Al congruent alloy.The effects of laser power and scanning speed on the molten pool size,surface roughness,relative density,microstructure,and micro-hardness of single-track and bulk Ti-6.38Al-3.87V-2.43Mo samples prepared via laser additive manufacturing(LAM)were investigated.The results show that processing parameters significantly affect the formability,microstructure,and micro-hardness of the alloy.With decreasing laser power from 1,900 W to 1,000 W,the relative density is decreased from 99.86%to 90.91%due to the increase of lack-of-fusion;however,with increasing scanning speed,the relative density does not change significantly,but exceeds 99%.In particular,Ti-6.38Al-3.87V-2.43Mo samples of single-track and bulk exhibit a good formability under an input laser power of 1,900 W and a scanning speed of 8 mm·s_(-1),and display the lowest surface roughness(Ra=13.33μm)and the highest relative density(99.86%).Besides,the microstructure of LAM Ti-6.38Al-3.87V-2.43Mo alloy coarsens with increasing laser power or decreasing scanning speed due to the greater input energy reducing the cooling rate.The coarsening of the microstructure decreases the microhardness of the alloy.
基金financially supported by the Natural Science Foundation of China (Nos. 51131002, 51041011 and 50901012)the Fundamental Research Funds for the Central Universities (No. DUT12LAB08)the Scientific Research Foundation for the Returned Overseas Chinese Scholars by the Ministry of Education of China
文摘The present work is devoted to the development of Fe-(B-Si)-Zr amorphous alloys with high glass-forming ability and good magnetic properties. Using the cluster-plus-glue-atom model proposed for ideal amorphous structures, [FeFe11B3Si](Fe1-xZrx) was determined as the cluster formula of Fe-(B-Si)-Zr alloys. The glass formation and thermal stability of the serial alloys, namely, [FeFel^B3Si](Fel_xZrx) (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, and 1.0), were studied by the combination of copper mold casting, X-ray diffraction, and differential thermal analysis techniques. The maxima of glass-forming ability and thermal stability were found to occur at the compositions of [FeFe11B3Si] (Fe0.6Zr0.4) and [FeFe11B3Si](Fe0.5Zr0.5). The alloys can be cast into amorphous rods with 1.5 ram diameter, and upon reheating, the amorphous alloys exhibit a large undercooled liquid span of 37 K. The saturation magnetization of the [FeFe11B3Si](Fe0.5Zr0.5) amorphous alloy was measured to be 1.4 T.
基金supported by the Fundamental Research Funds for the Central Universities(Nos.DUT11RC(3)70 and DUT11RC(3)29)the National Natural Science Foundation of China(No.51171034)the China Postdoctoral Science Foundation Funded Project(No.2012M510802)
文摘The thermal stability and the kinetics of glass transition and crystallization for Zr75-xNi25Alx (x = 8-15) metallic glasses were investigated using differential scanning calorimetry (DSC) under continuous heating conditions. The apparent activation energy of glass transition rises monotonously with the A1 content increasing; the activation energy of crystallization increases with A1 changing from 8at% to 15at%, and then decreases with A1 further up to 24at%, which exhibits a good correlation to the thermal stability and the glass-forming ability (GFA). The Zr60Ni25A115 metallic glass with the largest supercooled liquid region and GFA possesses the highest activation energy of crystallization. The relation between the thermal stability, GFA and activation energy of crystallization was discussed in terms of the primary precipitated phases.
基金supported by the National Natural Science Foundation of China under grant No.50801062
文摘Orthogonal experiments are used to design the pulsed bias related parameters, including bias magnitude, duty cycle and pulse frequency, during arc ion deposition of TiN films on stainless steel substrates in the case of samples placing normal to the plasma flux. The effect of these parameters on the amount and the size distribution of droplet-particles are investigated, and the results have provided sufficient evidence for the physical model, in which particles reduction is due to the case that the particles are negatively charged and repulsed from negative pulse electric field. The effect of sample configuration on amount and size distribution of the particles are analyzed. The results of the amount and size distribution of the particles are compared to those in the case of samples placing parallel to the plasma flux.
基金supported by the Key Discipline and Major Project of Dalian Science and Technology Innovation Foun-dation(No.2020JJ25CY004).
文摘Superalloys feature multi-elements and complex elemental ranges,which makes the proper composition selection difficult.In fact,more strict composition standards generally apply in practical productions.The objective of this paper is to understand and eventually to renew the composition standard via example of the most common grade Inconel 718.We have recently shown that t he alloy chemistry originates from a nearest-neighbor cluster[center-shell]plus a few next-neighbor glue atoms,or expressed in cluster for-mula[center-shell](glue atoms).By grouping the elements into Ni=(Ni,Co,Cu,Fe),Cr=(Cr,Mn,Si,Mo),and Nb=(Nb,Al,Ti),it is found that the reported alloys fall within a narrow composition zone Ni_(11.0-13.0)-Cr_(3.5-4.5)-Nb_(1) confined by cluster formulas of 16 and 18 atoms.This composition zone is also expressed in terms of 288-atom supercluster formulas,Ni_(198-208)-Cr_(63-72)-Nb_(16-18),which leads to coordi-nated elemental variations in wt.%:69.0≤Ni+Co+Cu+Fe≤72.7;19.8≤Cr+Mn+1.7 Si+0.6 Mo≤22.8;8.7≤Nb+3.2 Al+1.9 Ti≤9.8.Within this composition zone,Ni_(206)-Cr_(65.5)-Nb_(16.5) is further pinpointed and validated by our own experiments to possess the optimal match of strength and plasticity both at room and at 923 K.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701201)the Natural Science Foundation of China(No.11674045)。
文摘Mg-Gd-Y-Zr alloys with high strength fall within narrow composition range.The present paper explains their composition rule by establishing the cluster-plus-glue-atom unit of Gd-containing Mg solid solution with the aid of Mg matrix and Mg_(5) Gd precipitate phase.First,based on the structural homologue between Gd-containing Mg solid solution and Mg_(5) Gd precipitate phase and in combination with our previously established method for calculating the glue atoms,[Gd-Mg_(12)]Mg_(5) is obtained as the chemical unit of Gd-containing Mg solid solution.Then,seven compositions are designed using different combinations of this unit and that of pure Mg[Mg-Mg_(12)Mg3.After a systematic experimental investigation on the microstructure and mechanical property evolutions as a function of the unit proportions,it is revealed that the Mg-10.1 Gd-3.3 Y-0.9 Zr alloy,being issued from equi-proportion mixing of the two units,shows the strongest tendency of precipitation and reaches the highest strength of 374 MPa after aging.The composition and strength of this alloy are quite close to GW103 K which is well recognized for its general mechanical performance in Mg-Gd-Y-Zr system.
基金financially supported by the National Key Research and Development Plan(No.2017YFB0702400)the Science Challenge Project(No.TZ2016004)+1 种基金the National Magnetic Confinement Fusion Energy Research Project(No.2015GB121004)the Foundation of Guangxi Key Laboratory of Information Materials(No.161002-K)
文摘The multi-component composition characteristics of high-temperature near-α Ti alloys were investigated in the present work by means of a cluster formula approach. The uniform cluster formula [CN12 cluster](glue atom)3 for the hexagonal close-packed α solid solution was first obtained based on the Friedel oscillation theory, with a total atom number in the formula of Z = 16. Then it was analyzed that the Z values in the cluster composition formulas of typical near-α Ti alloys are within the range of Z = 16.0016.30, being perfectly consistent with the ideal Z = 16. Based on it, a series of new alloys with Z = 16 and with Nb/Ta substitution for Mo in Ti1100 alloy were designed, suction-cast into φ 6 mm rods, and then heat-treated with solid solution and aging. It was found that the alloy with co-addition of Mo, Ta and Nb has a high strength and good ductility at both room and high temperatures. More importantly, the additions of Nb and Ta can contribute to the formation of continuous and compact Al2O3 scales, resulting in an obvious improvement of oxidation resistances at both 923 K and 1073 K. The effects of Mo, Ta and Nb on the oxidation behaviors of the designed alloys at 1073 K were further discussed.
基金financially supported by the State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin,Chinathe National Natural Science Foundation of China (Grant No.51374048)+1 种基金the National Basic Research Program of China ("973 Program",Grant No.2011CB013402)the Fundamental Research Funds for the Central Universities
文摘Vacuum brazing of TiAl alloy to 40Cr steel sheets was conducted with newly developed CuTiNiZrV amorphous foils. It was found that a diffusion layer,filler metal and reaction layer existed in the brazed seam. The diffusion layer in the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25(at.%) foil was flat and thin,containing Ti19Al6 and Ti2Cu intermetallic compounds; however,the diffusion layer brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil was uneven with bulges,consisting of essentially Ti-based solute solution. The foil with 12.5 at.% V showed inferior spreadability compared to that with 6.25 at.% V at brazing temperature. However,fracture happened along the diffusion layer with 6.25 at.% V foil due to the formation of brittle intermetallic phases,but the joints brazed with 12.5 at.% V foil failed through the TiAl substrate. These results show that designing amorphous alloy with less Ti and more V for brazing TiAl alloy to steel is appropriate.
基金supported financially by the National Key Research and Development Program of China (No. 2016YFB0701201)the Natural Science Foundation of China (No. 11674045)
文摘Composition homogenization in solid solution is important for industrial alloys. In the present work, a solute homogenization model is proposed based on the chemical short-range-order tendency in Mg-Gd- based alloys. After a calculation using the cluster-plus-glue-atom model, the stable Mg-Gd structural unit is derived, [Gd-Mg12 ]Mg6, where one solute Gd is nearest-neighbored with twelve Mg atoms to form the characteristic hcp cluster [Gd-Mg12 ] and this cluster is matched with six Mg glue atoms. Such a local unit is then mixed with [Mg-Mg12 ]Mg3, the stable unit for pure Mg. Assuming that the Gd-containing units are arranged in fcc- or bcc-like lattice points and the Mg units in their octahedral interstices, three proportions between the two units are obtained, 1:1, 2:3, and 1:3, which constitute three solute homogenization modes. The prevailing Mg-Gd-based alloys are consequently classified into three groups, respectively exemplified by GW103 K (Mg-10Gd-3Y-0.4Zr, wt%), GW83 K (Mg-SGd-3Y-0.4Zr), and GW63 K (Mg-6Gd- 3Y-0.4Zr). Mg-Gd-Y-Zr alloys were designed following the model (where Y and Zr were also added in substitution for Gd) and prepared by permanent-mould casting. According to their mechanical properties, the 1:3 alloy (Mg-5.9Gd-1.6Y-0.4Zr) shows the best comprehensive properties (ultimate tensile strength 305 MPa, yield strength 186 MPa, elongation 9.0%) in solution plus ageing state.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
基金It was supported by the National Natural Science Foundation of China[No.91860108 and U1867201]the National Key Research and Development Plan(2017YFB0702401)+1 种基金Natural Science Foundation of Liaoning Province of China(Grant No.2019-KF-05-01)the Fundamental Research Funds for the Central Universities(DUT19LAB01).
文摘The present work formulated a materials design approach,a cluster-formula-embedded machine learning(ML)model,to search for body-centered-cubic(BCC)β-Ti alloys with low Young’s modulus(E)in the Ti–Mo–Nb–Zr–Sn–Ta system.The characteristic parameters,including the Mo equivalence and the cluster-formula approach,are implemented into the ML to ensure the accuracy of prediction,in which the former parameter represents the BCC-βstructural stability,and the latter reflects the interactions among elements expressed with a composition formula.Both auxiliary gradient-boosting regression tree and genetic algorithm methods were adopted to deal with the optimization problem in the ML model.
基金financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0701401)the National Natural Science Foundation of China (No. 11674045)
文摘It has been recently pointed out that the compositions of industrial alloys are originated from cluster-plus-glueatom structure units in solid solutions. Specifically for Ni-based superalloys, after properly grouping the alloying elements into Al, Ni-like(Ni^-), γ'-forming Cr-like(Cr^-γ') and γ-forming Cr-like(Cr^-γ'), the optimal formula for single-crystal superalloys is established [Al–Ni^-12](AlCr^-γ0:5Cr^-γ1:5). The Co substitutions for Ni at the shell sites are conducted on the basis of the first-generation single-crystal superalloy AM3, formulated as [Al-Ni2-xCox](Al1Ti0.25Ta0.25Cr1W0.25Mo0.25), with x = 1.5, 1.75, 2 and 2.5(the corresponding weight percents of Co are 9.43, 11.0, 12.57 and 15.71, respectively). The900 ℃ long-term aging follows the Lifshitz–Slyozov–Wagner theory(LSW theory), and the Co content does not have noticeable influence on the coarsening rate of c0. The microstructure and creep behavior of the four(001) single-crystal alloys are investigated. The creep rupture lifetime is reduced as Co increases. The alloy with the lowest Co(9.43 Co) shows the longest lifetime of about 350 h at 1050 ℃/120 MPa, and all the samples show N-type rafting after creep tests.
基金supported by the National Natural Science Foundation of China(51801017)the Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation(2020JJ25CY004)+3 种基金the Subject Development Foundation of Key Laboratory of Surface Physics and Chemistry(XKFZ201706)the State Key Lab of Advanced Metals and Materials(2018-Z03)the Scientific Challenge Program for National Defense Basic Scientific Research(TZ2016004)supported by the US National Science Foundation under Contract DMR-0905979。
文摘Each conventional alloy has its own specific compositions but the compositional origin is largely unknown due to our insufficient understanding about chemical shortrange ordering in the alloy,in particular,in the solid-solution state.In the present paper,the compositions of metallic alloys are discussed and formulated,by unveiling the basic moleculelike structural units in solid solutions.Friedel oscillation theory,which describes the partial charge screening behavior in solid solutions,and henceforth the origin of short-range ordering,is applied to pin down the ideal chemical compositions of conventional metallic alloys.We propose that,at a specific composition,atoms self-assemble into an ideally ordered structure consisting of atoms residing in the nearestneighbor shell(denoted as cluster)plus those in the next outer shell(denoted as glue atoms),which can be formulated as[cluster](glue atoms).This simplified version of short-rangeorder structure represents the smallest charge-neutral and mean-density zone(termed as“chemical units”)and can be regarded as the‘molecules’of solid solutions.Accordingly,the chemical units and the corresponding molecule-like formulas for face-centered-cubic(FCC),hexagonal close-packed(HCP),and body-centered cubic(BCC)structures are analyzed and equations are obtained to identify the chemical formulas for FCC solid solutions.For instance,well-knownα-brass Cu-30 Zn alloy is formulated as[Zn-Cu_(12)]Zn4.Examples of aluminum alloys,superalloys and stainless steels are also illustrated,demonstrating the versatility of the present model to interpret chemically complex alloys.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51374048)the National Basic Research Program of China ("973 Program", Grant No. 2011CB013402)+1 种基金the Fundamental Research Funds for the Central Universities (DUT13ZD209)the State Key Laboratory of Advanced Welding and Joining (AWJ-M14-06), Harbin Institute of Technology, Harbin, China
文摘Dissimilar metal joining of Ti-6AI-4V (TC4) titanium alloy to as-rolled 40Cr steel rods was conducted with friction welding, and the effect of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of the resultant joints was investigated. The average tensile strength of the as-welded joints reached 766 MPa and failure occurred in 40Cr steel base metal. However, after PWHT at 600℃ for 0.5, 1, 2 and 3 h, the tensile strength of the joints decreased and fracture happened through the interface with quasi-cleavage features. The bending angle of specimens was improved from 9.6° in as-welded state to 32.5° after PWHT for 2 h. The tensile strength of the joint was enhanced by martensitic transformation near the interface in as-welded state. Sorbite formed near the interface in PWHT state and improved the bending ductility of the joint. TiC brittle phase formed at the interface after PWHT for 0.5 h and deteriorated the tensile strength and bending ductility of the joint. After PWHT for 2 h, no TiC phase was detected at the interface. The microhardness on the interface in as-welded state was higher than that after PWHT, indicating that the decrease of microhardness around the interface could be accompanied by degradation of tensile strength but improvement of bending ductility of the joints.