As the third generation new battery,the power conversion efficiency(PCE)of metal halide perovskite solar cells(PsCs)has increased from 3.8%in 2009 to 25.8%currently certified,which fully shows that they have great res...As the third generation new battery,the power conversion efficiency(PCE)of metal halide perovskite solar cells(PsCs)has increased from 3.8%in 2009 to 25.8%currently certified,which fully shows that they have great research value and development prospect.As one of the main components of high-efficiency PSCs,hole transport materials(HTMs)play an important role in extracting and transporting holes and inhibiting charge recombination.However,commonly used HTMs require doping,and the hygroscopicity and corrosiveness of the dopants will destroy the stability of PsCs and hinder their commercialization.Therefore,it is of great significance to develop dopant-free HTMs.展开更多
Passivating the interfacial defects and reducing the interfacial non-radiative recombination losses are the keys to improving the photovoltaic performance of three-dimensional(3D)perovskite solar cells(PVSCs).Stacking...Passivating the interfacial defects and reducing the interfacial non-radiative recombination losses are the keys to improving the photovoltaic performance of three-dimensional(3D)perovskite solar cells(PVSCs).Stacking two dimensional(2D)perovskites on 3D perovskite is a promising method for interfacial treatment that improves the stability and efficiency of PVSCs.Herein,we developed conjugated fluorinated benzimidazolium cation(FBIm+)which can be inserted between 3D perovskite and holetransporting layer(HTL)to form 2D perovskite in situ.The 2D single crystal structures of(FBIm)_(2)Pb I4and(FBIm)_(2)Pb Br_(4)were achieved and confirmed by single-crystal X-ray diffraction(XRD),while few single crystals of 2D perovskite based on imidazolium or benzimidazolium anchors have been reported.The 2D perovskite can passivate the interfacial defects,induce better crystallinity and orientation,conduct lower trap density and extend carrier lifetime.Furthermore,the energy level arrangement can be regulated by changing the counterion from iodide to bromide,which can efficiently improve the hole extraction and device performances.As a consequence,the best efficiency of 23.00%for FBIm Br-incorporated devices was achieved,while only 20.72%for the control device.Meanwhile,the PVSCs modified by FBIm Br displayed excellent environmental stability due to the constructed hydrophobic 2D perovskite layer which can effectively block moisture permeation.This work develops a new path to design novel conjugated organic passivants to form 2D/3D perovskite structures.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51763013 and U20A20128)Jiangxi Provincial Natural Science Foundation(No.20224ACB213002)+1 种基金the Foundation of Jiangxi Educational Committee(No.GJJ200301)Jiangxi Provincial High-level and High-skilled Leading Talents Project.
文摘As the third generation new battery,the power conversion efficiency(PCE)of metal halide perovskite solar cells(PsCs)has increased from 3.8%in 2009 to 25.8%currently certified,which fully shows that they have great research value and development prospect.As one of the main components of high-efficiency PSCs,hole transport materials(HTMs)play an important role in extracting and transporting holes and inhibiting charge recombination.However,commonly used HTMs require doping,and the hygroscopicity and corrosiveness of the dopants will destroy the stability of PsCs and hinder their commercialization.Therefore,it is of great significance to develop dopant-free HTMs.
基金supported by the National Natural Science Foundation of China(51763013)the Natural Science Foundation of Jiangxi Province(20224ACB213002)the Foundation of Jiangxi Educational Committee(GJJ200301)。
文摘Passivating the interfacial defects and reducing the interfacial non-radiative recombination losses are the keys to improving the photovoltaic performance of three-dimensional(3D)perovskite solar cells(PVSCs).Stacking two dimensional(2D)perovskites on 3D perovskite is a promising method for interfacial treatment that improves the stability and efficiency of PVSCs.Herein,we developed conjugated fluorinated benzimidazolium cation(FBIm+)which can be inserted between 3D perovskite and holetransporting layer(HTL)to form 2D perovskite in situ.The 2D single crystal structures of(FBIm)_(2)Pb I4and(FBIm)_(2)Pb Br_(4)were achieved and confirmed by single-crystal X-ray diffraction(XRD),while few single crystals of 2D perovskite based on imidazolium or benzimidazolium anchors have been reported.The 2D perovskite can passivate the interfacial defects,induce better crystallinity and orientation,conduct lower trap density and extend carrier lifetime.Furthermore,the energy level arrangement can be regulated by changing the counterion from iodide to bromide,which can efficiently improve the hole extraction and device performances.As a consequence,the best efficiency of 23.00%for FBIm Br-incorporated devices was achieved,while only 20.72%for the control device.Meanwhile,the PVSCs modified by FBIm Br displayed excellent environmental stability due to the constructed hydrophobic 2D perovskite layer which can effectively block moisture permeation.This work develops a new path to design novel conjugated organic passivants to form 2D/3D perovskite structures.