The real structure and in situ evolution of catalysts under working conditions are of paramount importance,especially for bifunctional electrocatalysis.Here,we report asymmetric structural evolution and dynamic hydrog...The real structure and in situ evolution of catalysts under working conditions are of paramount importance,especially for bifunctional electrocatalysis.Here,we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst.Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co–Ni dual-metal sites with an unprecedented N8V4 structure,which can serve as an efficient bifunctional electrocatalyst for overall water splitting.More importantly,the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C–OH groups.Density functional theory calculations suggested that the flexible C–OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates,giving a bridge between elementary reactions to break the conventional scaling relationship.展开更多
基金supported by the National Key Research and Development Program of China(2021YFA1500401)the National Natural Science Foundation of China(21890380,21975290,21901089,and 21821003)+1 种基金the Foundation of Basic and Applied Basic Research of Guangdong Province(2020B1515120024)C.-T.H.acknowledges the Jiangxi Province(20202ZDB01004 and jxsq2018106041).
文摘The real structure and in situ evolution of catalysts under working conditions are of paramount importance,especially for bifunctional electrocatalysis.Here,we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst.Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co–Ni dual-metal sites with an unprecedented N8V4 structure,which can serve as an efficient bifunctional electrocatalyst for overall water splitting.More importantly,the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C–OH groups.Density functional theory calculations suggested that the flexible C–OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates,giving a bridge between elementary reactions to break the conventional scaling relationship.