In vitro cultures of primary cortical neurons are widely used to investigate neuronal function.However,it has yet to be fully investigated whether there are significant differences in development and function between ...In vitro cultures of primary cortical neurons are widely used to investigate neuronal function.However,it has yet to be fully investigated whether there are significant differences in development and function between cultured rodent and primate cortical neurons,and whether these differences influence the utilization of cultured cortical neurons to model pathological conditions.Using in vitro culture techniques combined with immunofluorescence and electrophysiological methods,our study found that the development and maturation of primary cerebral cortical neurons from cynomolgus monkeys were slower than those from mice.We used a microelectrode array technique to compare the electrophysiological differences in cortical neurons,and found that primary cortical neurons from the mouse brain began to show electrical activity earlier than those from the cynomolgus monkey.Although cultured monkey cortical neurons developed slowly in vitro,they exhibited typical pathological features-revealed by immunofluorescent staining-when infected with adeno-associated viral vectors expressing mutant huntingtin(HTT),the Huntington’s disease protein.A quantitative analysis of the cultured monkey cortical neurons also confirmed that mutant HTT significantly reduced the length of neurites.Therefore,compared with the primary cortical neurons of mice,cultured monkey cortical neurons have longer developmental and survival times and greater sustained physiological activity,such as electrophysiological activity.Our findings also suggest that primary cynomolgus monkey neurons cultured in vitro can simulate a cell model of human neurodegenerative disease,and may be useful for investigating time-dependent neuronal death as well as treatment via neuronal regeneration.All mouse experiments and protocols were approved by the Animal Care and Use Committee of Jinan University of China(IACUC Approval No.20200512-04)on May 12,2020.All monkey experiments were approved by the IACUC protocol(IACUC Approval No.LDACU 20190820-01)on August 23,2019 for animal management and use.展开更多
Room-temperature phosphorescence(RTP) materials have attracted great attention due to their involvement of excited triplet states and comparatively long decay lifetimes.In this short review,recent progress on enhanc...Room-temperature phosphorescence(RTP) materials have attracted great attention due to their involvement of excited triplet states and comparatively long decay lifetimes.In this short review,recent progress on enhancement of RTP from purely organic materials is summarized.According to the mechanism of phosphorescence emission,two principles are discussed to construct efficient RTP materials:one is promoting intersystem crossing(ISC) efficiency by using aromatic carbonyl,heavyatom,or/and heterocycle/heteroatom containing compounds;the other is suppressing intramolecular motion and intermolecular collision which can quench excited triplet states,including embedding phosphors into polymers and packing them tightly in crystals.With aforementioned strategies,RTP from purely organic materials was achieved both in fluid and rigid media.展开更多
Automatic identification of characters marked on billets is very important for steelworks to achieve manu- facturing and logistics informatization management. Due to the presence of adhesions, fractures, blurs, and ot...Automatic identification of characters marked on billets is very important for steelworks to achieve manu- facturing and logistics informatization management. Due to the presence of adhesions, fractures, blurs, and other problems in characters painted on billets, character recognition accuracy with machine vision is relatively low, and hardly meets practical application requirements. To make the character recognition results more reliable and accu- rate, an identification results classification and post-pro- cessing method has been proposed in this paper. By analyzing issues in the image segmentation and recognition stage, the recognition result classification model, based on character encoding rules and recognition confidence, is built, and the character recognition results can be classified as correct, suspect, or wrong. In the post-processing stage, a human-machine-cooperation mechanism with a post- processing interface is designed to eliminate error infor- mation in suspect and wrong types. The system was developed and experiments conducted with images acquired in an iron and steel factory. The results show the character recognition accuracy to be approximately 89% using the character recognizer. However, this result cannot be directly applied in information management systems. With the proposed post-processing method, a human worker will query the suspect and wrong results classified by the system, determine whether the result is correct or wrong, and then, correct the wrong result through the post-processing interface. Using this method, the character recognition accuracy ultimately improves to 99.4%. Thus, the results will be more reliable applied in a practical system.展开更多
基金This work was supported by the National Natural Science Foundation of China,No.81922026(to SY)the National Key Research and Development Program of China Stem Cell and Translational Research,No.2017YFA0105104(to SY)+3 种基金Key Field Research and Development Program of Guangdong Province,No.2018B030337001(to XJL)Guangdong Key Laboratory of Non-human Primate Models of Brain Diseases,No.2020B121201006(to XJL)Guangzhou Key Research Program on Brain Science,No.202007030008(to SY)the Fundamental Research Funds for the Central Universities,No.21619104(to SY).
文摘In vitro cultures of primary cortical neurons are widely used to investigate neuronal function.However,it has yet to be fully investigated whether there are significant differences in development and function between cultured rodent and primate cortical neurons,and whether these differences influence the utilization of cultured cortical neurons to model pathological conditions.Using in vitro culture techniques combined with immunofluorescence and electrophysiological methods,our study found that the development and maturation of primary cerebral cortical neurons from cynomolgus monkeys were slower than those from mice.We used a microelectrode array technique to compare the electrophysiological differences in cortical neurons,and found that primary cortical neurons from the mouse brain began to show electrical activity earlier than those from the cynomolgus monkey.Although cultured monkey cortical neurons developed slowly in vitro,they exhibited typical pathological features-revealed by immunofluorescent staining-when infected with adeno-associated viral vectors expressing mutant huntingtin(HTT),the Huntington’s disease protein.A quantitative analysis of the cultured monkey cortical neurons also confirmed that mutant HTT significantly reduced the length of neurites.Therefore,compared with the primary cortical neurons of mice,cultured monkey cortical neurons have longer developmental and survival times and greater sustained physiological activity,such as electrophysiological activity.Our findings also suggest that primary cynomolgus monkey neurons cultured in vitro can simulate a cell model of human neurodegenerative disease,and may be useful for investigating time-dependent neuronal death as well as treatment via neuronal regeneration.All mouse experiments and protocols were approved by the Animal Care and Use Committee of Jinan University of China(IACUC Approval No.20200512-04)on May 12,2020.All monkey experiments were approved by the IACUC protocol(IACUC Approval No.LDACU 20190820-01)on August 23,2019 for animal management and use.
基金the financial support from The National Basic Research Program of China(No.2014CB643802)Ministry of Science and Technology(No.2016YFB0401001)the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals
文摘Room-temperature phosphorescence(RTP) materials have attracted great attention due to their involvement of excited triplet states and comparatively long decay lifetimes.In this short review,recent progress on enhancement of RTP from purely organic materials is summarized.According to the mechanism of phosphorescence emission,two principles are discussed to construct efficient RTP materials:one is promoting intersystem crossing(ISC) efficiency by using aromatic carbonyl,heavyatom,or/and heterocycle/heteroatom containing compounds;the other is suppressing intramolecular motion and intermolecular collision which can quench excited triplet states,including embedding phosphors into polymers and packing them tightly in crystals.With aforementioned strategies,RTP from purely organic materials was achieved both in fluid and rigid media.
文摘Automatic identification of characters marked on billets is very important for steelworks to achieve manu- facturing and logistics informatization management. Due to the presence of adhesions, fractures, blurs, and other problems in characters painted on billets, character recognition accuracy with machine vision is relatively low, and hardly meets practical application requirements. To make the character recognition results more reliable and accu- rate, an identification results classification and post-pro- cessing method has been proposed in this paper. By analyzing issues in the image segmentation and recognition stage, the recognition result classification model, based on character encoding rules and recognition confidence, is built, and the character recognition results can be classified as correct, suspect, or wrong. In the post-processing stage, a human-machine-cooperation mechanism with a post- processing interface is designed to eliminate error infor- mation in suspect and wrong types. The system was developed and experiments conducted with images acquired in an iron and steel factory. The results show the character recognition accuracy to be approximately 89% using the character recognizer. However, this result cannot be directly applied in information management systems. With the proposed post-processing method, a human worker will query the suspect and wrong results classified by the system, determine whether the result is correct or wrong, and then, correct the wrong result through the post-processing interface. Using this method, the character recognition accuracy ultimately improves to 99.4%. Thus, the results will be more reliable applied in a practical system.